

Monte Carlo Dynamic Classifier

Reference manual

Version 1.2.0
29/03/2016

ChangeLog
Version Date Description
1.2.0 2016-3-29 - Add a sample folder “sample2015”

- Allow to select a spline function instead of
“spapi” for 1-dimensional state sequences
- Allow to use multiple observation sequences for

a known state sequence
- Constrain particles within the grid range for

the particle filter algorithm
- Allow to update the observation function for

each dimension at each iteration
- Implement the MH with Gibbs sampling

algorithm
1.1.9 2015-12-22 - Fix LogMvnPdf.m

- Fix scripts for plotting in “sample” folder
- Add sample scripts: sample_for_Kitagawa.m,

sample_for_Lorenz.m, and
sample_for_Motion.m

1.1.9- 2015-12-12 - Delete unnecessary white spaces
- Fix the log file format
- Modify Graphs.m
- Translate Japanese comments in the source

codes into English
- Update copyright (2014 -> 2014-2015)
- Fix sample scripts for random number

generation: add “rng('default')” to reproduce
the same results
- Add sample scripts for plotting
- Add unit test scripts

1.1.8 2014-12-22 Bug fixes in Graphs.m in the case that either the
dimension of state or observation variables is
equal to one

1.1.7 2014-12-14 Change the notations of “PMCMC” and
“PMCMC2” into “PMCMC” and “PMCMC2”,
respectively, in all codes

1.1.6 2014-12-08 Change the notations of “PSMC” into “PSMC”
in all codes

1.1.5 2014-11-25 Add the license information (GPL v2) in all
codes

1.1.4 2014-11-10 Bug fix for one-dimensional state variable
1.1.3 2014-06-30 Initial release

 - i -

Contents
1. INTRODUCTION .. 1
2. PROGRAM EXECUTION ... 2

2.1. MCDCTRAIN ... 2
2.1.1. Execution Method ... 2
2.1.2. Parameter ... 3
2.1.3. Return value ... 4
2.1.4. Intermediate file ... 5
2.1.5. Log file .. 5

2.2. MCDCTEST ... 6
2.2.1. Execution Method ... 6
2.2.2. Parameters ... 6
2.2.3. Return Values ... 6

2.3. GRAPHS ... 7
2.3.1. Graphs.YE .. 7
2.3.2. Graphs.XE .. 7
2.3.3. Graphs.YEMean ... 8
2.3.4. Graphs.XEMean ... 8
2.3.5. Graphs.Loglik ... 9
2.3.6. Graphs.Rmse .. 10

2.4. EXAMPLE OF PROGRAM EXECUTION .. 10
2.4.1. Generation of Observed Data .. 10
2.4.2. Design of State Space .. 11
2.4.3. Model Design ... 11
2.4.4. Configuration of Algorithm of MCDCTrain .. 12
2.4.5. Configuration as to execution of model estimation .. 12
2.4.6. Execution of model estimation .. 13

2.5. ADVANCED USE OF MCDCTRAIN ... 13
2.5.1. Given state function ... 14
2.5.2. Given observation function .. 14
2.5.3. Given state sequence .. 14
2.5.4. Estimation of the state sequence with non-Gaussian noise 15
2.5.5. Use of multiple sequences .. 16
2.5.6. Estimation with Metropolis-Hastings with Gibbs sampling 17

3. PROGRAM STRUCTURE .. 18
3.1. FILE STRUCTURE ... 18

4. LICENSE ... 24

Reference manual Introduction

 - 1 -

1. Introduction

This manual is to explain the program execution procedures created in the “Monte
Carlo Dynamic Classifier (MCDC) Tools development and experiment supporting
work”. Monte Carlo Dynamic Classifier Tools is a program that performs model
estimation of arbitrary observed data sequences and estimation of state sequences
of its estimated model. The estimated model can be used for class separation of
observed data sequences by applying it to different observed data sequences and
calculating the likelihood of the model. MCDC Tools is composed of the following
program bundle:
MCDCTrain

Model estimation program
MCDCTest

Calculation of model likelihood program
Graphs

A set of functions for graph drawing of estimated models
The following chapters of this manual explain the execution methods and examples of

these programs (Chapter 2), and program structures (Chapter 3). Further, in a section
of the sample program attached to these tools, motion capture data is used. The
motion capture data is offered publicly in the CMU Graphics Lab Motion Capture
Database. The use permission conditions are stated in Chapter 4.

Reference manual Program Execution

 - 2 -

2. Program Execution

MCDC Tools offers MCDC Train that performs model estimation for observed data
sequences, and MCDC Test, which conduct an estimation of state sequences of unknown
observed data sequences using the estimated model.

Additionally, Graphs class is also offered as a tool of compiled sets of functions that
draws graphs of estimated models. In this chapter, the execution methods of these
programs are explained.

2.1. MCDCTrain
MCDC Train function is a program, which performs model estimation for observed

data sequences.

2.1.1. Execution Method

MCDC Train function is executed as follows :

[IDX, SKP, OKP, FV, GV, XE, YE, loglik] = MCDCTrain(...

 algorithm, ...

 grids, ...

 stateKernelGens, ...

 obsKernelGens, ...

 stateMeanFuncs, ...

 obsMeanFuncs, ...

 gridDimForGM, ...

 stateSplineHandle, ...

 obsSplineHandle, ...

 x0, ...

 xaux, ...

 u, ...

 y', ...

 N, ...

 J, ...

 K, ...

 aspect ...

);

It can also read the output file from past executions and perform continuous iterative
executions. In this case, the MCDC Train function is executed as follows. In case of
iterative executions, read the parameters from the designated MAT-File and resume
execution with the same configurations as previously. However, by assigning a class of
Name and Value, the previous configuration can be overwritten and executed.

[IDX, SKP, OKP, FV, GV, XE, YE, loglik] = MCDCTrain(matfile, aspect, Name, Value. ...)

Reference manual Program Execution

 - 3 -

2.1.2. Parameter

MCDC Train function parameters are as follows:
Parameter Data type Description
algorithm Algorithm Algorithm Classification.
xGrids G double[] cell Coordinates of lattice point formed on state

space. Display each dimensional value as
cell array stored as double array.

stateKernelGens Dx handle cell Kernel prior distribution of state transition
function. Dx indicates the number of
dimensions subject to estimation in state
space.

obsKernelGens P handle cell Kernel prior distribution of observation
function.

gridDimForGramMatrix int Dimensions used to create gram matrix.
stateSplineHandle handle Algorithm used for spline interpolation for the

state function.	
obsSplineHandle handle Algorithm used for spline interpolation for the

observation function.
x0 Dx*1 double Initial state of state variables.
xaux Da*T double Additional state data.
u D*T double Control data.
z P*T double Observed data.
N int Number of particles when particle filter is

executed.
J int Entire number of MCMC iterations.
K int Observed offset.
aspect Aspect System configuration information (log output

destination, etc.).

Select algorithm parameter from any of the classes below:	

Class name Description
PSMC Generate state transition function and observed function by

random sampling from Gaussian process. This does not
perform parameter estimation.

PMCMC Generate state transition function and observed function by
random sampling from Gaussian process. Use particle
marginal Metropolis-Hastings (PMCMC) method for
parameter estimation.

PMCMC2 Generate state transition function and observed function by
random sampling from Gaussian process. Use particle
marginal Metropolis-Hastings method for parameter
estimation. Use one dimension only specific to state space for

Reference manual Program Execution

 - 4 -

Class name Description
covariance function.

When PMCMC2 is used as algorithm, select a learning method of mean value

function and covariance function, or a learning method of kernel parameters used in
covariance function from below:
Class name Description
MCDCStrategyChoice1 Without learning average function, always use

anchor model. Use kernel function for
covariance function.

MCDCStrategyChoice2 Perform sampling of functions from present GP
surface used as a mean value function. Use
kernel function for covariance function.

MCDCStrategyChoice3 Perform sampling of functions from present GP
surface used as a mean value function. Use
fixed covariance matrix without using kernel
function for covariance function.

RBFKernelGeneratorStrategyChoice1 Perform a random sampling of RBF kernel’s
kernel-parameters from prior distribution.

RBFKernelGeneratorStrategyChoice2 Generate RBF kernel’s kernel-parameters from
present value of random walk.

The handle of an own designed spline function can be passed. The default spline
functions are as follows:

Function Description
GenericSpline General spline function using “spapi” for the

multiple dimensional state space.
SimpleSpline Simple and fast spline function using “spline”

for 1-dimensional state space.
SimpleSplineInGrid Simple and fast spline function for

1-dimensional state space. When the transition
destination is outside the grid, it is pulled back to
the end point of the grid.

2.1.3. Return value

Returned values as a result of MCDC Train function are as follows:
Value Data type Description
IDX J*1 double Number of cumulative receipts until (j)th

iteration.
SKP A*D*2 double At (a)th received iteration 1 , kernel

parameters of state transition function
(sigma, l).

Reference manual Program Execution

 - 5 -

Value Data type Description
OKP A*P*2 double At (a)th received iteration, kernel

parameters of observed function (sigma, l).
FV A*D*G double At (a)th received iteration, values on lattice

point by state transition function. G
indicates a multidimensional array that
corresponds with the size of lattice point.

GV A*P*G double At (a)th received iteration, values on lattice
point by observation function. G indicates
a multidimensional array that corresponds
with the size of lattice point.

XE A*T*D double At (a)th received iteration, estimated mean
of state variables at time (t).

YE A*T*P double At (a)th received iteration, estimated mean
of observed variables at time (t).

loglik A*1 double At (a)th received iteration, estimated
logarithmic likelihood by particle filter.

2.1.4. Intermediate file

Intermediate state will be stored in accordance with the aspect settings when
executing. This will be output as a dump file in .MAT format. The data stored in the
file is as follows:
Value Data type Description
algorithm Algorithm Algorithm passed to MCDC Train

parameters.
in MCDCInput All MCDC Train parameters excluding

algorithm and aspect.
out MCDCOutput All return values of MCDC Train (halfway

state) and present number of iteration (j).

2.1.5. Log file

The log file will be outputted in accordance with the aspect settings when executing.
This is a text format file. The log file will be the following format.

2014/04/26 11:29:36 - Iteration 18 / 200

2014/04/26 11:29:36 - StateKernel[1]: [Sigma=8.932992, L=7.409991]

2014/04/26 11:29:36 - StateKernel[2]: [Sigma=4.410584, L=2.304895]

2014/04/26 11:29:36 - ObsKernel[1]: [Sigma=1.711191, L=9.248074]

2014/04/26 11:29:36 - ObsKernel[2]: [Sigma=9.867704, L=9.599577]

2014/04/26 11:29:36 - ObsKernel[3]: [Sigma=7.700470, L=8.679293]

2014/04/26 11:29:36 - Creating GramMatrix using 1 dim...

2014/04/26 11:29:36 - StateKernel[1] Done

2014/04/26 11:29:36 - StateKernel[2] Done

2014/04/26 11:29:36 - ObsKernel[1] Done

Reference manual Program Execution

 - 6 -

2014/04/26 11:29:36 - ObsKernel[2] Done

2014/04/26 11:29:36 - ObsKernel[3] Done

2014/04/26 11:29:36 - Drawing GP surface...

2014/04/26 11:29:36 - Estimating using particle filter... (N=500)

2014/04/26 11:30:20 - Acceptance log probability = 232745.510426

2014/04/26 11:30:20 - logLH = -5347068.232758, accepted

2014/04/26 11:30:20 - Elapsed time is 44.324939 seconds.

2014/04/26 11:30:20 - j: 8 bytes

2014/04/26 11:30:20 - IDX: 1600 bytes

2014/04/26 11:30:20 - SKP: 128 bytes

2014/04/26 11:30:20 - OKP: 192 bytes

2014/04/26 11:30:20 - FV: 61504 bytes

2014/04/26 11:30:20 - GV: 92256 bytes

2014/04/26 11:30:20 - XE: 122752 bytes

2014/04/26 11:30:20 - YE: 184128 bytes

2014/04/26 11:30:20 - loglik: 32 bytes

2.2. MCDCTest
MCDC Test function estimates unknown state of data using the acquired model by

MCDC Train. This can be applied to a class separation problem by performing state
estimation using multiple different models and comparing the likelihood of each.

2.2.1. Execution Method

MCDC Test function is executed as follows.

[result, FnState, FnObs] = MCDCTest(u, y, N, modelFile)

2.2.2. Parameters

Parameters of MCDC Test function are as follows:
Parameter Data type Description
u D*T double Control data.
y P*T double Observed data.
N int Number of particles when particle filter is

executed.
modelFile chars Model file.

2.2.3. Return Values

Returned values as a result of MCDC Test function are as follows:
Value Data type Description
result ParticleFilter Number of cumulative receipts up to (j)th

iteration.
FnState handle State transition function.
FnObs handle Observation function.

Reference manual Program Execution

 - 7 -

The result of return value includes the result of state estimation by particle filter,
which has the following structures:
Value Data type Description
Particles N*T*D double Coordinates of each particle at time (t).
Weights N*T double Weight of each particle at time (t).
Loglik double Logarithmic likelihood of estimated state.

2.3. Graphs
The model estimated by MCDC Train can be outputted into a PDF file using a set of

functions defined in Graph class. The following graphs can be outputted.

2.3.1. Graphs.YE

This outputs a temporal transition graph of results by pursuing observed data by
particle filters using observed data sequences and estimated models. In MCMC
iteration, it outputs the results using an estimated model at designated specific
iterations. It also outputs graphs with respect to each dimension of observed data
sequences. It is executed as follows:

Graphs.YE(...

 outputFileNamePrefix, ...

 matFileName, ...

 iterations, ...

 times ...

);

Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by the number of dimensions and
extension of .PDF.

matFileName char[] MATLAB data file name, including
estimated model.

iterations int[] Matrix that lists MCMC iteration of plotted
estimated values.

times int[] Range of plotted data sequence. Output
the entire data sequence when omitted.

2.3.2. Graphs.XE

It outputs a temporal transition graph of state sequences estimated values by particle
filters using estimated models. In MCMC iteration, it outputs a result using an
estimated model at a designated specific iteration. It also outputs a graph with respect
to each dimension of state sequences. It is executed as follows. It is executed as
follows.

Reference manual Program Execution

 - 8 -

Graphs.XE(...

 outputFileNamePrefix, ...

 matFileName, ...

 iterations, ...

 times ...

);

Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by the number of dimensions and
extension of .PDF.

matFileName char[] MATLAB data file name, including
estimated model.

iterations int[] Matrix that lists MCMC iteration of plotted
estimated values.

times int[] Range of plotted data sequence. Output
the entire data sequence when omitted.

2.3.3. Graphs.YEMean

This outputs a temporal transition graph of results by pursuing observed data by
particle filters using observed data sequences and estimated models. It uses the mean
estimated model of entire MCMC iteration. It also outputs graphs with respect to each
dimension of observed data sequences. It is executed as follows.

Graphs.YEMean(...

 outputFileNamePrefix, ...

 matFileName, ...

 times ...

);

Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by the number of dimensions and
extension of .PDF.

matFileName char[] MATLAB data file name, including
estimated model.

times int[] Range of plotted data series. Output the
entire data sequence when omitted.

2.3.4. Graphs.XEMean

This outputs a temporal transition graph of state sequence of estimated values by

Reference manual Program Execution

 - 9 -

particle filters using estimated models. It uses the mean estimated model of the entire
MCMC iteration. It also outputs a graph with respect to each dimension of state
sequence. It is executed as follows.

Graphs.XEMean(...

 outputFileNamePrefix, ...

 matFileName, ...

 times ...

);

Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by the number of dimensions and
extension of .PDF.

matFileName char[] MATLAB data file name, including
estimated model.

times int[] Range of plotted data series. Output the
entire data sequence when omitted.

2.3.5. Graphs.Loglik

In model estimation, it outputs logarithmic likelihood values estimated by each
MCMC iteration, which is executed as follows.

Graphs.Loglik(...

 outputFileNamePrefix, ...

 matFileName1, ...

 matFileName2, ...

 ...

);

Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by extension of .PDF.

matFileName1, 2, ... char[] MATLAB data file name, including
estimated model. If multiple files are
selected, it draws graphs of each
individually as one sequence.

 The return value is as follows:

Value Data type Description
loglik double Log-likelihood value

Reference manual Program Execution

 - 10 -

2.3.6. Graphs.Rmse

In model estimation, it outputs mean square error of the results of estimated
observed data sequences using estimated models up to each MCMC iteration, which is
executed as follows.

Graphs.Rmse(...

 outputFileNamePrefix, ...

 matFileName ...

);

 Parameters are as follows:
Parameter Data type Description
outputFileNamePrefix char[] File name prefix of output graph file. The

file name will be a designated prefix
followed by extension of .PDF.

matFileName char[] MATLAB data file name, including
estimated model.

The return values are as follows

Value Data type Description
RmseMean double The mean of the mean square errors at each

MCMC iteration.
RmseStd double The standard deviation of the mean square

errors at each MCMC iteration.
Rmse double[] The matrix of the mean square errors at

each MCMC iteration.

2.4. Example of Program Execution
As an execution example of model estimation by MCDC Train, the performing of

estimation of observed data sequences generated from Kitagawa’s model is show. The
code samples are included in the following folder.

samples/KitagawaModelPMCMC2Estimation.m

2.4.1. Generation of Observed Data

First, prepare observed data subject to model estimation. Generally, observed data
should be provided in advance, here we use data sequences generated from Kitagawa’s
model as observed data.

[x, y] = KitagawaModel(1000, 0.5, 28, 8, 0.6, 30, 10, 0.05, 0.06, 0.07, 0.08, 0.1, 0.1);

Reference manual Program Execution

 - 11 -

u = repmat(cos(1.2 * [1:T]), 2, 1)';

Due to this code, observed data sequences are stored in y. State sequences are stored
in x, but x is not going to be used after this process. Further, in Kitagawa’s model, to
give time-varying control data, control data sequences are also generated here together
with observed data.

2.4.2. Design of State Space

MCDC Train performs model estimations with state space models being unknown.
With the current program, the number of dimensions of state space and the moving
range for values of state variables need to be given. In the following, consider the
two-dimensional state space and configure the lattice point in the range from -30 to 30
at 2.0 increments for each dimension.

grids = { ...

 [-30:2:30], ...

 [-30:2:30] ...

};

In the process of model estimation, perform sampling a value of function from the
Gaussian process on the lattice point configured here and by performing spline
interpolation so that state transition function and observation function are created.
The expressive power of the model is stronger when many lattice points are selected in a
wider extent. However, it will significantly increase the processing time and the
amount of memory used.

2.4.3. Model Design

Next, design models for state transition function and observed function. In MCDC
Train, mean value function when sampling functions from Gaussian process and kernel
covariance matrix can be given to both state transition function and observation
function.

stateKernelGens = { ...

 RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ...

 RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)) ...

};

obsKernelGens = {

 RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ...

 RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ...

 RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)) ...

};

stateMeanFuncs = { ...

 @(x) (a1 .* x(1,:) + b1 .* x(1,:) / (1 + x(1,:) .^ 2)), ...

 @(x) (a2 .* x(2,:) + b2 .* x(2,:) / (1 + x(2,:) .^ 2)) ...

Reference manual Program Execution

 - 12 -

};

obsMeanFuncs = { ...

 @(x) (d1 .* x(1,:) .^ 2 + d2 .* x(2,:) .^ 2), ...

 @(x) (d3 .* x(1,:) .^ 2), ...

 @(x) (d4 .* x(2,:) .^ 2) ...

};

In the example codes above, use RBF kernel conforming to uniform distribution with
parameters, σ and l, both being [0.01, 10], and configure Kitagawa’s model state
transition function and observed function to mean value function2.

2.4.4. Configuration of Algorithm of MCDCTrain

Select Algorithm used for MCMC iteration of MCDC Train. Choose either fixing
kernel parameters and mean value function in prior distribution or transit it every
time.

kernelGeneratorStrategy = @RBFKernelGeneratorStrategyChoice2;

mcdcStrategy = @MCDCStrategyChoice2;

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

For MCMC iteration, the MCMC algorithm is set as follows. The argument value of
1.0 means that the MH with Gibbs algorithm is not (refer section 2.5).

algorithm.SetPMCMCProbability(1.0);

When both state and observation functions are unknown and estimated with GP, the
following settings are specified. When state or observation function is known, the
settings in sections 2.5.1 or 2.5.2 are specified.

stateModel = GaussianProcessModel(ModelKind.State, algorithm);

algorithm.SetStateModel(stateModel);

obsModel = GaussianProcessModel(ModelKind.Observation, algorithm);

algorithm.SetObsModel(obsModel);

For MCDCStrategyChoice2, a dimension in the state space which can be dependent
with the other dimensions is selected and used to boost the MCMC iterations.
GenericSpline for multi-dimensional interpolation should be specified in this case.

gridDimForGramMatrix = 1;

stateSplineHandle = @GenericSpline;

obsSplineHandle = @GenericSpline;

2.4.5. Configuration as to execution of model estimation

Configure the number of iterations of model estimation, number of particles and

2In general, a true model is unknown, configuring a true model as mean value function cannot be set.

Reference manual Program Execution

 - 13 -

output destination of log files.

x0 = zeros(1, 2);

N = 500;

J = 100000;

aspect = Aspect();

aspect.LogFileName = 'logs/KitagawaModelPMCMC2.log';

aspect.MatFileNamePrefix = 'logs/KitagawaModelPMCMC2';

aspect.SavesIntermediateMat = true;

aspect.IntermediateMatInterval = 100;

When the state sequence is unknown and estimated by the particle filter algorithm,
the following settings are specified. When the state sequence is known or multiple
sequences are available, the settings in section 2.5.3 are specified.

likelihoodCalculator = PMCMCParticleFilter(x0, xaux, u, y, q, r, N, 0);

algorithm.SetLikelihoodCalculator(likelihoodCalculator);

2.4.6. Execution of model estimation

Use all the configurations up to here and execute model estimation by MCDCTrain.

[IDX, SKP, OKP, FV, GV, XE, YE, loglik] = MCDCTrain(...

 algorithm, …

 grids, ...

 stateKernelGens, ...

 obsKernelGens, ...

 stateMeanFuncs, ...

 obsMeanFuncs, ...

 gridDimForGramMatrix, ...

 splineHandle, ...

 x0, ...

 [], ... % No auxiliary states

 u', ...

 y', ...

 N, ...

 J, ...

 0, ...

 aspect ...

);

2.5. Advanced use of MCDCTrain
When executing MCDCTrain, some alternative procedures are available. Here the

settings are described.

Reference manual Program Execution

 - 14 -

2.5.1. Given state function

 For MCDCTrain, when the state function is known, the settings are specified by
using SetStateModel. In such a case, only the observation function is estimated. An
example is as follows:

% Define the state function as an array.

stateMeanFuncs = { ...

 @(x) (a1 .* x(1,:) + b1 .* x(1,:) / (1 + x(1,:) .^ 2)), ...

 @(x) (a2 .* x(2,:) + b2 .* x(2,:) / (1 + x(2,:) .^ 2)) ...

};

% Generate the algorithm object.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

% Set the state model and the algorithm object.

stateModel = FixedModel(ModelKind.State, VectorValuedFunction(stateMeanFuncs));

algorithm.SetStateModel(stateModel);

The detailed information is in the following folder.

samples/KitagawaModelPMCMCEstimation_stateFixed.m

2.5.2. Given observation function

For MCDCTrain, when the observation function is known, the settings are specified
using SetObsmodel. In such a case, only the state function is estimated. An example is
as follows.

% Define the observation function as an array.

obsMeanFuncs = { ...

 @(x) (d1 .* x(1,:) .^ 2 + d2 .* x(2,:) .^ 2), ...

 @(x) (d3 .* x(1,:) .^ 2), ...

 @(x) (d4 .* x(2,:) .^ 2) ...

};

% Generate the algorithm object.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

% Set the observation model and the algorithm object.

obsModel = FixedModel(ModelKind.Observation, VectorValuedFunction(obsMeanFuncs));

algorithm.SetObsModel(obsModel);

The detailed information is in the following folder.

samples/KitagawaModelPMCMCEstimation_obsFixed.m

2.5.3. Given state sequence

For MCDCTrain, when the state sequence is known, the acceptance probability for
each MCMC iteration is calculated using the pair of the observation and state

Reference manual Program Execution

 - 15 -

sequences without the particle filter algorithm which is used to estimate the state
sequence in the case that the state sequence is unknown. An example is shown as
follows:

% Generate the algorithm object.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

% Set the state sequence and the algorithm object.

likelihoodCalculator = KnownSequence(x, xaux, u, y, q, r, K);

algorithm.SetLikelihoodCalculator(likelihoodCalculator);

The parameters in the KnownSequence class are as follows:
Parameter Data type Description
x Dx*T double State data
xaux Da*T double Additional state data
u D*T double Control data
y P*T double Observed data
q double Variance of state noise
r double Variance of observed noise
K int Observed offset

The detailed information in the following folder.

samples/KitagawaModelPMCMCEstimation_knownSequence.m

2.5.4. Estimation of the state sequence with non-Gaussian noise

For the model estimation with MCDCTrain, Gaussian noise is assumed as default.
However, several noises can be specified for the algorithm object using SetStateNoise.
An example is as follows:

% Generate the algorithm object.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

% Generate the noise distribution for the state sequence.

xdim = size(x0, 2);

stateNoise = CauchyDistribution(0, q, xdim);

% Set the noise distribution to the algorithm object.

algorithm.SetStateNoise(stateNoise);

For the observation sequence, the noise is specified using SetObsNoise in a similar
way.

Parameters are as follows. “dim” means the dimension of the state or observation

data.
Noise distribution and parameters Description

Reference manual Program Execution

 - 16 -

Noise distribution and parameters Description
CauchyDistribution(m,v,dim) Cauchy distribution

(Mean m, Variance v)
ExponentialDistribution(mu,dim) Exponential distribution

(Mean mu)
GammaDistribution(a,b,dim) Gamma distribution

(Shape a, Scale b)
GeneralizedParetoDistribution(k,sigm

a,theta,dim)

Generalized Pareto distribution
(Shape k, Scale sigma, Location theta)

LaplaceDistribution(location,scale,d

im)

Laplace distribution
(Location location, Scale scale)

NormalDistribution(m,v,dim) Normal distribution
(Mean m, Variance v)

TDistribution(nu,dim) t distribution
(Degree of freedom nu)

TLocationScaleDistribution(m,v,nu,di

m)

t location-scale distribution
(Mean m, Variance v, Degree of freedom nu)

UniformDistribution(lb,ub,dim) Uniform distribution
(Lower lb, Upper ub)

WeibullDistribution(a,b,dim) Weibull distribution
(Scale a, Shape b)

The detailed information is in the following folder.

samples/KitagawaModelPMCMCEstimation_nonGaussianNoise.m

2.5.5. Use of multiple sequences

An example for use of multiple sequences is as follows:

% Generate the algorithm object.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

% Set the multiple sequences to the algorithm object.

likelihoodCalculator = MultipleKnownSequence(X, xaux, u, Y, q, r, K);

algorithm.SetLikelihoodCalculator(likelihoodCalculator);

The parameters for the MultipleKnownSequence class are as follows:
Parameter Data type Description

X Cell of
Dx*T double

Cell array for state data
Dx*T matrix for each cell

xaux Cell of
Da*T double

Cell array for additional state data
Da*T matrix for each cell

u Cell of
D*T double

Cell array for control data
D*T matrix for each cell

Reference manual Program Execution

 - 17 -

Parameter Data type Description
Y Cell of

P*T double
Cell array for observed data
P*T matrix for each cell

q double Variance of sate noise
r double Variance of observed noise
K int Observed offset

2.5.6. Estimation with Metropolis-Hastings with Gibbs sampling

In each EM iteration, either PMCMC or MH with Gibbs sampling algorithm is
selected with a pre-fixed probability. The probability of 0 means that MH with Gibbs
sampling is always selected, while the probability of 1 means that PMCMC is always
selected. The default is 0.25.

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy);

algorithm.SetPMCMCProbability(1.0); % Don't use MH-Gibbs

Reference manual Program Structure

 - 18 -

3. Program Structure

This chapter explains the program structure of MCDC Tools.

3.1. File Structure
MCDC Tools is created as a MAT-Lab program. The list of program files is as

follows:
File name Description
Algorithm.m Abstract base class that represents

algorithm used for model estimation.
Aspect.m Configuration class to set program

operation.
BoundedNormalDistribution.m Normal distribution limited within

positive range.
CheckGridTransformation.m Ranges check function for grid mapping.
CompositeLikelihoodCalculator.m Log-likelihood calculation for multiple

sequences
ContinuousUnivariateDistribution.m Continuous univariate distribution
DBA.m DTW Barycenter Averaging
DBAAlign.m Align the lengths of the multiple

sequences with DBA
Distribution.m Abstract base class that represents

probability distribution.
ExponentialDistribution.m Exponential distribution.
FixedModel.m Fixed model without estimation
FixedValueDistribution.m Distribution with a fixed value
GPSurface.m Function that requires grid mapping.
GammaDistribution.m Gamma distribution
GaussianProcessModel.m State space model with GP estimation
GaussianProcessModelRotate.m State space model with GP estimation. A

dimension in the state space is selected
and used to boost the MCMC iterations.

GeneralizedParetoDistribution.m Generalized Pareto distribution
GenericSpline.m Multidimensional spline interpolation

function. Use “spapi” function.
Graphs.m Graph drawing function group.
GridData.m Grid structure in state space.
IterationStrategy.m EM iteration strategy

IterationStrategyDefault.m Use of PMCMC
IterationStrategyMHGibbs.m Use of MH with Gibbs sampling

Reference manual Program Structure

 - 19 -

File name Description
IterationStrategyProbabilistic.m Selectively use of PMCMC and MH with

Gibbs sampling with a pre-fixed
probability.

Kernel.m Kernel function (abstract base class).
KernelGenerator.m Kernel function generator (abstract base

class).
KnownSequence.m Use of known sequence.
LaplaceDistribution.m Laplace distribution.
LikelihoodCalculator.m Likelihood calculation.
MCDCInput.m Input data of model estimation.
MCDCMatFile.m Intermediate file output class of model

estimation.
MCDCOutput.m Output result of model estimation.
MCDCRegression.m Regression using the estimated model.
MCDCStrategy.m Abstract base class that determines

MCMC’s operations.
MCDCStrategyChoice1.m Class that determines MCMC’s

operations. Without learning mean value
function, always use anchor model.

MCDCStrategyChoice1_PSMC.m Class that determines MCMC’s
operations. Without learning mean value
function, always use anchor model.

MCDCStrategyChoice2.m Class that determines MCMC’s
operations. Perform sampling of
functions from present GP surface used as
mean value function.

MCDCStrategyChoice3.m Class that determines MCMC’s
operations. Perform sampling of functions
from present GP surface used as mean
value function. Without learning
covariance function, use fixed covariance
matrix.

MCDCTest.m Likelihood calculation program of
estimation model.

MCDCTrain.m Model estimation program.
ModelFunctions.m Spline function for grid mapping.
ModelFunctions2.m Spline function for grid mapping.
ModelKind.m Model kind
MultipleKnownSequence.m Calculation for multiple known sequences
NormalDistribution.m Normal distribution.
PMCMC.m Model estimation algorithm. Generate

Reference manual Program Structure

 - 20 -

File name Description
state transition function and observed
function by random sampling from
Gaussian process. Use particle marginal
Metropolis-Hastings (PMCMC) method for
parameter estimation.

PMCMC2.m Model estimation algorithm. Generate
state transition function and observed
function by random sampling from
Gaussian process. Use particle marginal
Metropolis-Hastings method for
parameter estimation. Use one
dimension only specific to state space for
covariance function.

PMCMCParticleFilter.m Particle filter. Perform ancestor
sampling to use it by PMCMC method

PSMC.m Model estimation algorithm. Generate
state transition function and observed
function by random sampling from
Gaussian process. Parameter estimation
is not performed.

ParticleFilter.m Particle filters.
PlotGraph.m Graph drawing subroutines. Used from

Graphs.m.
RBFKernel.m RBF kernel. Use it as a covariance

function of the Gaussian process.
RBFKernelGenerator.m RBF kernel function generator.
RBFKernelGeneratorStrategy.m Abstract base class that determines a

generating method for RBF kernel
function.

RBFKernelGeneratorStrategyChoice1.m RBF kernel function generating algorithm.
Perform random sampling of kernel
parameters from prior distribution.

RBFKernelGeneratorStrategyChoice2.m RBF kernel function generating algorithm.
Generate kernel parameters by random
walk from present value.

SimpleSpline.m Simple spline function for 1-dimensional
state space with “spline” function.

SimpleSplineInGrid.m Simple spline function for 1-dimensional
state space with “spline” function. When
the transition destination is outside the
grid, it is pulled back to the end point of

Reference manual Program Structure

 - 21 -

File name Description
the grid.

SkewTDistribution.m Skewed-t distribution
TDistribution.m t distribution
TLocationScaleDistribution.m t location-scale distribution
TruncatedDistribution.m Distribution truncated by lower and upper

limits.
UniformDistribution.m Uniform distribution.
VectorValuedFunction.m Routines that compile scalar valued

functions of each dimension to vector
valued functions.

WeibullDistribution.m Weibull distribution
logmvnpdf.m Log multivariate normal distribution

function by Benjamin Dichter with BSD
license.

Also, the following sample directories contain program files to perform model

estimation using MCDC Tools and conduct discrimination experiments for sample data.
The list of files included in the sample directories are as follows:
File name Description
KitagawaModel.m Time series generating function

by Kitagawa’s model.
KitagawaModelPMCMC2Estimation.m Kitagawa’s model estimation

experiment program (use
PMCMC2 algorithm).

KitagawaModelPMCMC2Estimation_knownSequence.m Kitagawa’s model estimation
experiment program with a
known state sequence.
(use PMCMC2 algorithm)

KitagawaModelPMCMC2Estimation_nonGaussianNoise.m Kitagawa’s model estimation
experiment program with
non-Gaussian noise.
(use PMCMC2 algorithm)

KitagawaModelPMCMC2Estimation_obsFixed.m Kitagawa’s model estimation
experiment program with a
known observed sequence.
(use PMCMC2 algorithm)

KitagawaModelPMCMC2Estimation_stateFixed.m Kitagawa’s model estimation
experiment program with a given
state function.
(use PMCMC2 algorithm)

KitagawaModelPMCMCEstimation.m Kitagawa’s model estimation

Reference manual Program Structure

 - 22 -

File name Description
experiment program (use
PMCMC Algorithm).

KitagawaModelPSMCEstimation.m Kitagawa’s model estimation
experiment program (use PSMC
algorithm).

KitagawaModel_WriteGraphs.m Kitagawa’s model estimation
result drawing program.

LinearStateSpaceModel.m Time series generating function
by linear state space model.

LinearStateSpaceModelPSMCEstimation.m Linear state space model
estimation experiment program
(use PSMC algorithm).

LinearStateSpaceModelPMCMC2Estimation.m Linear state space model
estimation experiment program
(use PMCMC2 algorithm).

LinearStateSpaceModelPMCMCEstimation.m Linear state space model
estimation experiment program
(use PMCMC algorithm).

LorenzModel.m Time series generating function
by Lorenz’s model.

LorenzModelPMCMC2Estimation.m Lorenz’s model estimation
experiment program (use
PMCMC2 algorithm).

LorenzModelPMCMC2EstimationWithoutAnchor.m Lorenz’s model estimation
experiment program without
anchor model.
(use PMCMC2 algorithm)

LorenzModelPMCMC2Estimation_knownSequence.m Lorenz’s model estimation
experiment program with a
known state sequence.
(use PMCMC2 algorithm)

LorenzModelPMCMC2Estimation_obsFixed.m Lorenz’s model estimation
experiment program with a given
observation function.
(use PMCMC2 algorithm)

LorenzModelPMCMC2Estimation_stateFixed.m Lorenz’s model estimation
experiment program with a given
state function.
(use PMCMC2 algorithm)

LorenzModelPMCMCEstimation.m Lorenz’s model estimation
experiment program (use

Reference manual Program Structure

 - 23 -

File name Description
PMCMC algorithm).

LorenzModelPSMCEstimation.m Lorenz’s model estimation
experiment program (use PSMC
algorithm).

LorenzModel_WriteGraphs.m Lorenz’s model estimation result
drawing program.

MotionCapture.m Time series generating function
from motion capture data.

MotionCapturePMCMC2Estimation.m Motion capture model estimation
experiment program (use
PMCMC2 algorithm).

MotionCapturePMCMC2Test.m Motion capture class separation
experiment program.

MotionCapture_WriteGraphs.m Motions capture model
estimation result drawing
program.

amc_to_matrix.m3 Transfer function from AMC file
to MATLAB matrix format.

3 This code is originally contained in the CMU Graphics Lab Motion Capture Database (http://mocap.cs.cmu.edu/).
This is required for the execution of the program.

Reference manual License

 - 24 -

4. License

Among the experimental sample data in MCDC tools, the samples that use motion
capture data are executed using data and tools that are published on the following
website.

CMU Graphics Lab Motion Capture Database

http://mocap.cs.cmu.edu/

Use permission conditions are posted on the website shown below.

This data is free for use in research projects.

You may include this data in commercially-sold products,

but you may not resell this data directly, even in converted form.

If you publish results obtained using this data, we would appreciate it

if you would send the citation to your published paper to jkh+mocap@cs.cmu.edu,

and also would add this text to your acknowledgments section:

The data used in this project was obtained from mocap.cs.cmu.edu.

The database was created with funding from NSF EIA-0196217.

