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1. Introduction 

This manual is to explain the program execution procedures created in the “Monte 
Carlo Dynamic Classifier (MCDC) Tools development and experiment supporting 
work”.  Monte Carlo Dynamic Classifier Tools is a program that performs model 
estimation of arbitrary observed data sequences and estimation of state sequences 
of its estimated model.  The estimated model can be used for class separation of 
observed data sequences by applying it to different observed data sequences and 
calculating the likelihood of the model.  MCDC Tools is composed of the following 
program bundle: 
MCDCTrain 

Model estimation program 
MCDCTest 

Calculation of model likelihood program 
Graphs 

A set of functions for graph drawing of estimated models 
The following chapters of this manual explain the execution methods and examples of 

these programs (Chapter 2), and program structures (Chapter 3).  Further, in a section 
of the sample program attached to these tools, motion capture data is used.  The 
motion capture data is offered publicly in the CMU Graphics Lab Motion Capture 
Database.  The use permission conditions are stated in Chapter 4. 
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2. Program Execution 

MCDC Tools offers MCDC Train that performs model estimation for observed data 
sequences, and MCDC Test, which conduct an estimation of state sequences of unknown 
observed data sequences using the estimated model. 

Additionally, Graphs class is also offered as a tool of compiled sets of functions that 
draws graphs of estimated models.  In this chapter, the execution methods of these 
programs are explained. 

2.1. MCDCTrain 
MCDC Train function is a program, which performs model estimation for observed 

data sequences. 

2.1.1. Execution Method 

MCDC Train function is executed as follows : 

[ IDX, SKP, OKP, FV, GV, XE, YE, loglik ] = MCDCTrain( ... 

  algorithm, ... 

  grids, ... 

  stateKernelGens, ... 

  obsKernelGens, ... 

  stateMeanFuncs, ... 

  obsMeanFuncs, ... 

  gridDimForGM, ... 

  stateSplineHandle, ... 

  obsSplineHandle, ... 

  x0, ... 

  xaux, ... 

  u, ... 

  y', ... 

  N, ... 

  J, ... 

  K, ... 

  aspect ... 

); 

It can also read the output file from past executions and perform continuous iterative 
executions.  In this case, the MCDC Train function is executed as follows.  In case of 
iterative executions, read the parameters from the designated MAT-File and resume 
execution with the same configurations as previously.  However, by assigning a class of 
Name and Value, the previous configuration can be overwritten and executed. 

[IDX, SKP, OKP, FV, GV, XE, YE, loglik] = MCDCTrain(matfile, aspect, Name, Value. ...) 
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2.1.2. Parameter 

MCDC Train function parameters are as follows: 
Parameter Data type Description 
algorithm Algorithm Algorithm Classification. 
xGrids G double[] cell Coordinates of lattice point formed on state 

space.  Display each dimensional value as 
cell array stored as double array. 

stateKernelGens Dx handle cell Kernel prior distribution of state transition 
function.  Dx indicates the number of 
dimensions subject to estimation in state 
space. 

obsKernelGens P handle cell Kernel prior distribution of observation 
function. 

gridDimForGramMatrix int Dimensions used to create gram matrix. 
stateSplineHandle handle Algorithm used for spline interpolation for the 

state function.	  
obsSplineHandle handle Algorithm used for spline interpolation for the 

observation function. 
x0 Dx*1 double Initial state of state variables. 
xaux Da*T double Additional state data. 
u D*T double Control data. 
z P*T double Observed data. 
N int Number of particles when particle filter is 

executed. 
J int Entire number of MCMC iterations. 
K int Observed offset. 
aspect Aspect System configuration information (log output 

destination, etc.). 
 
Select algorithm parameter from any of the classes below:	

Class name Description 
PSMC Generate state transition function and observed function by 

random sampling from Gaussian process.  This does not 
perform parameter estimation. 

PMCMC Generate state transition function and observed function by 
random sampling from Gaussian process.  Use particle 
marginal Metropolis-Hastings (PMCMC) method for 
parameter estimation. 

PMCMC2 Generate state transition function and observed function by 
random sampling from Gaussian process. Use particle 
marginal Metropolis-Hastings method for parameter 
estimation.  Use one dimension only specific to state space for 
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Class name Description 
covariance function. 

 
When PMCMC2 is used as algorithm, select a learning method of mean value 

function and covariance function, or a learning method of kernel parameters used in 
covariance function from below: 
Class name Description 
MCDCStrategyChoice1 Without learning average function, always use 

anchor model.  Use kernel function for 
covariance function. 

MCDCStrategyChoice2 Perform sampling of functions from present GP 
surface used as a mean value function. Use 
kernel function for covariance function. 

MCDCStrategyChoice3 Perform sampling of functions from present GP 
surface used as a mean value function.  Use 
fixed covariance matrix without using kernel 
function for covariance function. 

RBFKernelGeneratorStrategyChoice1 Perform a random sampling of RBF kernel’s 
kernel-parameters from prior distribution. 

RBFKernelGeneratorStrategyChoice2 Generate RBF kernel’s kernel-parameters from 
present value of random walk. 

 
The handle of an own designed spline function can be passed. The default spline 
functions are as follows:  

Function Description 
GenericSpline General spline function using “spapi” for the 

multiple dimensional state space. 
SimpleSpline Simple and fast spline function using “spline” 

for 1-dimensional state space.  
SimpleSplineInGrid Simple and fast spline function for 

1-dimensional state space.  When the transition 
destination is outside the grid, it is pulled back to 
the end point of the grid. 

 

2.1.3. Return value 

Returned values as a result of MCDC Train function are as follows: 
Value Data type Description 
IDX J*1 double Number of cumulative receipts until (j)th 

iteration. 
SKP A*D*2 double At (a)th received iteration 1 , kernel 

parameters of state transition function 
(sigma, l). 
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Value Data type Description 
OKP A*P*2 double At (a)th received iteration, kernel 

parameters of observed function (sigma, l). 
FV A*D*G double At (a)th received iteration, values on lattice 

point by state transition function.  G 
indicates a multidimensional array that 
corresponds with the size of lattice point. 

GV A*P*G double At (a)th received iteration, values on lattice 
point by observation function.  G indicates 
a multidimensional array that corresponds 
with the size of lattice point. 

XE A*T*D double At (a)th received iteration, estimated mean 
of state variables at time (t). 

YE A*T*P double At (a)th received iteration, estimated mean 
of observed variables at time (t). 

loglik A*1 double At (a)th received iteration, estimated 
logarithmic likelihood by particle filter. 

2.1.4. Intermediate file 

Intermediate state will be stored in accordance with the aspect settings when 
executing.  This will be output as a dump file in .MAT format.  The data stored in the 
file is as follows: 
Value Data type Description 
algorithm Algorithm Algorithm passed to MCDC Train 

parameters. 
in MCDCInput All MCDC Train parameters excluding 

algorithm and aspect. 
out MCDCOutput All return values of MCDC Train (halfway 

state) and present number of iteration (j). 

2.1.5. Log file 

The log file will be outputted in accordance with the aspect settings when executing.  
This is a text format file.  The log file will be the following format. 

2014/04/26 11:29:36 - Iteration 18 / 200 

2014/04/26 11:29:36 -   StateKernel[1]: [ Sigma=8.932992, L=7.409991 ] 

2014/04/26 11:29:36 -   StateKernel[2]: [ Sigma=4.410584, L=2.304895 ] 

2014/04/26 11:29:36 -   ObsKernel[1]: [ Sigma=1.711191, L=9.248074 ] 

2014/04/26 11:29:36 -   ObsKernel[2]: [ Sigma=9.867704, L=9.599577 ] 

2014/04/26 11:29:36 -   ObsKernel[3]: [ Sigma=7.700470, L=8.679293 ] 

2014/04/26 11:29:36 -   Creating GramMatrix using 1 dim... 

2014/04/26 11:29:36 -     StateKernel[1] Done 

2014/04/26 11:29:36 -     StateKernel[2] Done 

2014/04/26 11:29:36 -     ObsKernel[1] Done 
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2014/04/26 11:29:36 -     ObsKernel[2] Done 

2014/04/26 11:29:36 -     ObsKernel[3] Done 

2014/04/26 11:29:36 -   Drawing GP surface... 

2014/04/26 11:29:36 -   Estimating using particle filter... (N=500) 

2014/04/26 11:30:20 -   Acceptance log probability = 232745.510426 

2014/04/26 11:30:20 -   logLH = -5347068.232758, accepted 

2014/04/26 11:30:20 - Elapsed time is 44.324939 seconds. 

2014/04/26 11:30:20 -   j: 8 bytes 

2014/04/26 11:30:20 -   IDX: 1600 bytes 

2014/04/26 11:30:20 -   SKP: 128 bytes 

2014/04/26 11:30:20 -   OKP: 192 bytes 

2014/04/26 11:30:20 -   FV: 61504 bytes 

2014/04/26 11:30:20 -   GV: 92256 bytes 

2014/04/26 11:30:20 -   XE: 122752 bytes 

2014/04/26 11:30:20 -   YE: 184128 bytes 

2014/04/26 11:30:20 -   loglik: 32 bytes 

2.2. MCDCTest 
MCDC Test function estimates unknown state of data using the acquired model by 

MCDC Train.  This can be applied to a class separation problem by performing state 
estimation using multiple different models and comparing the likelihood of each. 

2.2.1. Execution Method 

MCDC Test function is executed as follows. 

[ result, FnState, FnObs ] = MCDCTest(u, y, N, modelFile) 

2.2.2. Parameters 

Parameters of MCDC Test function are as follows: 
Parameter Data type Description 
u D*T double Control data. 
y P*T double Observed data. 
N int Number of particles when particle filter is 

executed. 
modelFile chars Model file. 

2.2.3. Return Values 

Returned values as a result of MCDC Test function are as follows: 
Value Data type Description 
result ParticleFilter Number of cumulative receipts up to (j)th 

iteration. 
FnState handle State transition function. 
FnObs handle Observation function. 
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The result of return value includes the result of state estimation by particle filter, 
which has the following structures: 
Value Data type Description 
Particles N*T*D double Coordinates of each particle at time (t). 
Weights N*T double Weight of each particle at time (t). 
Loglik double Logarithmic likelihood of estimated state. 

2.3. Graphs 
The model estimated by MCDC Train can be outputted into a PDF file using a set of 

functions defined in Graph class.  The following graphs can be outputted. 

2.3.1. Graphs.YE 

This outputs a temporal transition graph of results by pursuing observed data by 
particle filters using observed data sequences and estimated models.  In MCMC 
iteration, it outputs the results using an estimated model at designated specific 
iterations.  It also outputs graphs with respect to each dimension of observed data 
sequences.  It is executed as follows: 

Graphs.YE( ... 

  outputFileNamePrefix, ... 

  matFileName, ... 

  iterations, ... 

  times ... 

); 

Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file. The 

file name will be a designated prefix 
followed by the number of dimensions and 
extension of .PDF. 

matFileName char[] MATLAB data file name, including 
estimated model. 

iterations int[] Matrix that lists MCMC iteration of plotted 
estimated values. 

times int[] Range of plotted data sequence.  Output 
the entire data sequence when omitted. 

2.3.2. Graphs.XE 

It outputs a temporal transition graph of state sequences estimated values by particle 
filters using estimated models.  In MCMC iteration, it outputs a result using an 
estimated model at a designated specific iteration.  It also outputs a graph with respect 
to each dimension of state sequences.  It is executed as follows.  It is executed as 
follows. 
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Graphs.XE( ... 

  outputFileNamePrefix, ... 

  matFileName, ... 

  iterations, ... 

  times ... 

); 

Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file. The 

file name will be a designated prefix 
followed by the number of dimensions and 
extension of .PDF. 

matFileName char[] MATLAB data file name, including 
estimated model. 

iterations int[] Matrix that lists MCMC iteration of plotted 
estimated values. 

times int[] Range of plotted data sequence.  Output 
the entire data sequence when omitted. 

2.3.3. Graphs.YEMean 

This outputs a temporal transition graph of results by pursuing observed data by 
particle filters using observed data sequences and estimated models.  It uses the mean 
estimated model of entire MCMC iteration.  It also outputs graphs with respect to each 
dimension of observed data sequences.  It is executed as follows. 

Graphs.YEMean( ... 

  outputFileNamePrefix, ... 

  matFileName, ... 

  times ... 

); 

Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file. The 

file name will be a designated prefix 
followed by the number of dimensions and 
extension of .PDF. 

matFileName char[] MATLAB data file name, including 
estimated model. 

times int[] Range of plotted data series.  Output the 
entire data sequence when omitted. 

2.3.4. Graphs.XEMean 

This outputs a temporal transition graph of state sequence of estimated values by 
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particle filters using estimated models.  It uses the mean estimated model of the entire 
MCMC iteration.  It also outputs a graph with respect to each dimension of state 
sequence.  It is executed as follows. 

Graphs.XEMean( ... 

  outputFileNamePrefix, ... 

  matFileName, ... 

  times ... 

); 

Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file. The 

file name will be a designated prefix 
followed by the number of dimensions and 
extension of .PDF. 

matFileName char[] MATLAB data file name, including 
estimated model. 

times int[] Range of plotted data series.  Output the 
entire data sequence when omitted. 

2.3.5. Graphs.Loglik 

In model estimation, it outputs logarithmic likelihood values estimated by each 
MCMC iteration, which is executed as follows.  

Graphs.Loglik( ... 

  outputFileNamePrefix, ... 

  matFileName1, ... 

  matFileName2, ... 

  ... 

); 

Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file.  The 

file name will be a designated prefix 
followed by extension of .PDF. 

matFileName1, 2, ... char[] MATLAB data file name, including 
estimated model.  If multiple files are 
selected, it draws graphs of each 
individually as one sequence. 

 
 The return value is as follows:  

Value Data type Description 
loglik double Log-likelihood value 
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2.3.6. Graphs.Rmse 

In model estimation, it outputs mean square error of the results of estimated 
observed data sequences using estimated models up to each MCMC iteration, which is 
executed as follows. 

Graphs.Rmse( ... 

  outputFileNamePrefix, ... 

  matFileName ... 

); 

 Parameters are as follows: 
Parameter Data type Description 
outputFileNamePrefix char[] File name prefix of output graph file.  The 

file name will be a designated prefix 
followed by extension of .PDF. 

matFileName char[] MATLAB data file name, including 
estimated model. 

 
 
 
The return values are as follows 

Value Data type Description 
RmseMean double The mean of the mean square errors at each 

MCMC iteration.  
RmseStd double The standard deviation of the mean square 

errors at each MCMC iteration.  
Rmse double[] The matrix of the mean square errors at 

each MCMC iteration.  
 

2.4. Example of Program Execution 
As an execution example of model estimation by MCDC Train, the performing of 

estimation of observed data sequences generated from Kitagawa’s model is show. The 
code samples are included in the following folder. 

samples/KitagawaModelPMCMC2Estimation.m 

 

2.4.1. Generation of Observed Data 

First, prepare observed data subject to model estimation.  Generally, observed data 
should be provided in advance, here we use data sequences generated from Kitagawa’s 
model as observed data. 

[x, y] = KitagawaModel(1000, 0.5, 28, 8, 0.6, 30, 10, 0.05, 0.06, 0.07, 0.08, 0.1, 0.1); 
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u  = repmat(cos(1.2 * [1:T]), 2, 1)'; 

Due to this code, observed data sequences are stored in y.  State sequences are stored 
in x, but x is not going to be used after this process.  Further, in Kitagawa’s model, to 
give time-varying control data, control data sequences are also generated here together 
with observed data. 

2.4.2. Design of State Space 

MCDC Train performs model estimations with state space models being unknown.  
With the current program, the number of dimensions of state space and the moving 
range for values of state variables need to be given.  In the following, consider the 
two-dimensional state space and configure the lattice point in the range from -30 to 30 
at 2.0 increments for each dimension. 

grids = { ... 

  [-30:2:30], ... 

  [-30:2:30]  ... 

}; 

In the process of model estimation, perform sampling a value of function from the 
Gaussian process on the lattice point configured here and by performing spline 
interpolation so that state transition function and observation function are created.  
The expressive power of the model is stronger when many lattice points are selected in a 
wider extent.  However, it will significantly increase the processing time and the 
amount of memory used. 

2.4.3. Model Design 

Next, design models for state transition function and observed function.  In MCDC 
Train, mean value function when sampling functions from Gaussian process and kernel 
covariance matrix can be given to both state transition function and observation 
function. 

stateKernelGens = { ... 

  RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ... 

  RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10))  ... 

}; 

 

obsKernelGens = { 

  RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ... 

  RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10)), ... 

  RBFKernelGenerator(UniformDistribution(0.01, 10), UniformDistribution(0.01, 10))  ... 

}; 

 

stateMeanFuncs = { ... 

  @(x) (a1 .* x(1,:) + b1 .* x(1,:) / (1 + x(1,:) .^ 2)), ... 

  @(x) (a2 .* x(2,:) + b2 .* x(2,:) / (1 + x(2,:) .^ 2))  ... 
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}; 

 

obsMeanFuncs = { ... 

  @(x) (d1 .* x(1,:) .^ 2 + d2 .* x(2,:) .^ 2), ... 

  @(x) (d3 .* x(1,:) .^ 2                    ), ... 

  @(x) (                    d4 .* x(2,:) .^ 2)  ... 

}; 

In the example codes above, use RBF kernel conforming to uniform distribution with 
parameters, σ and l, both being [0.01, 10], and configure Kitagawa’s model state 
transition function and observed function to mean value function2. 

2.4.4. Configuration of Algorithm of MCDCTrain 

Select Algorithm used for MCMC iteration of MCDC Train.  Choose either fixing 
kernel parameters and mean value function in prior distribution or transit it every 
time. 

kernelGeneratorStrategy = @RBFKernelGeneratorStrategyChoice2; 

mcdcStrategy = @MCDCStrategyChoice2; 

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

For MCMC iteration, the MCMC algorithm is set as follows. The argument value of 
1.0 means that the MH with Gibbs algorithm is not (refer section 2.5). 

algorithm.SetPMCMCProbability(1.0); 

When both state and observation functions are unknown and estimated with GP, the 
following settings are specified. When state or observation function is known, the 
settings in sections 2.5.1 or 2.5.2 are specified.  

stateModel = GaussianProcessModel(ModelKind.State, algorithm); 

algorithm.SetStateModel(stateModel); 

obsModel = GaussianProcessModel(ModelKind.Observation, algorithm); 

algorithm.SetObsModel(obsModel); 

For MCDCStrategyChoice2, a dimension in the state space which can be dependent 
with the other dimensions is selected and used to boost the MCMC iterations. 
GenericSpline for multi-dimensional interpolation should be specified in this case.  

gridDimForGramMatrix = 1; 

stateSplineHandle = @GenericSpline; 

obsSplineHandle = @GenericSpline; 

 

2.4.5. Configuration as to execution of model estimation 

Configure the number of iterations of model estimation, number of particles and 

                                                
2In general, a true model is unknown, configuring a true model as mean value function cannot be set. 
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output destination of log files. 

x0 = zeros(1, 2); 

N  = 500; 

J  = 100000; 

 

aspect = Aspect(); 

aspect.LogFileName = 'logs/KitagawaModelPMCMC2.log'; 

aspect.MatFileNamePrefix = 'logs/KitagawaModelPMCMC2'; 

aspect.SavesIntermediateMat = true; 

aspect.IntermediateMatInterval = 100; 

When the state sequence is unknown and estimated by the particle filter algorithm, 
the following settings are specified. When the state sequence is known or multiple 
sequences are available, the settings in section 2.5.3 are specified.  

likelihoodCalculator = PMCMCParticleFilter(x0, xaux, u, y, q, r, N, 0); 

algorithm.SetLikelihoodCalculator(likelihoodCalculator); 

 

2.4.6. Execution of model estimation 

Use all the configurations up to here and execute model estimation by MCDCTrain. 

[ IDX, SKP, OKP, FV, GV, XE, YE, loglik ] = MCDCTrain( ... 

  algorithm, … 

  grids, ... 

  stateKernelGens, ... 

  obsKernelGens, ... 

  stateMeanFuncs, ... 

  obsMeanFuncs, ... 

  gridDimForGramMatrix, ... 

  splineHandle, ... 

  x0, ... 

  [], ... % No auxiliary states 

  u', ... 

  y', ... 

  N, ... 

  J, ... 

  0, ... 

  aspect ... 

); 

 

2.5. Advanced use of MCDCTrain 
When executing MCDCTrain, some alternative procedures are available. Here the 

settings are described.  
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2.5.1. Given state function 

 For MCDCTrain, when the state function is known, the settings are specified by 
using SetStateModel. In such a case, only the observation function is estimated. An 
example is as follows: 

% Define the state function as an array. 

stateMeanFuncs = { ... 

  @(x) (a1 .* x(1,:) + b1 .* x(1,:) / (1 + x(1,:) .^ 2)), ... 

  @(x) (a2 .* x(2,:) + b2 .* x(2,:) / (1 + x(2,:) .^ 2))  ... 

}; 

 

% Generate the algorithm object. 

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

 

% Set the state model and the algorithm object. 

stateModel = FixedModel(ModelKind.State, VectorValuedFunction(stateMeanFuncs)); 

algorithm.SetStateModel(stateModel); 

The detailed information is in the following folder.  

samples/KitagawaModelPMCMCEstimation_stateFixed.m 

2.5.2. Given observation function 

For MCDCTrain, when the observation function is known, the settings are specified 
using SetObsmodel. In such a case, only the state function is estimated. An example is 
as follows. 

% Define the observation function as an array. 

obsMeanFuncs = { ... 

  @(x) (d1 .* x(1,:) .^ 2 + d2 .* x(2,:) .^ 2), ... 

  @(x) (d3 .* x(1,:) .^ 2                    ), ... 

  @(x) (                    d4 .* x(2,:) .^ 2)  ... 

}; 

 

% Generate the algorithm object.  

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

 

% Set the observation model and the algorithm object. 

obsModel = FixedModel(ModelKind.Observation, VectorValuedFunction(obsMeanFuncs)); 

algorithm.SetObsModel(obsModel); 

The detailed information is in the following folder. 

samples/KitagawaModelPMCMCEstimation_obsFixed.m 

2.5.3. Given state sequence 

For MCDCTrain, when the state sequence is known, the acceptance probability for 
each MCMC iteration is calculated using the pair of the observation and state 
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sequences without the particle filter algorithm which is used to estimate the state 
sequence in the case that the state sequence is unknown. An example is shown as 
follows: 

% Generate the algorithm object.  

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

 

% Set the state sequence and the algorithm object.  

likelihoodCalculator = KnownSequence(x, xaux, u, y, q, r, K); 

algorithm.SetLikelihoodCalculator(likelihoodCalculator); 

The parameters in the KnownSequence class are as follows:  
Parameter Data type Description 
x Dx*T double State data 
xaux Da*T double Additional state data 
u D*T double Control data 
y P*T double Observed data 
q double Variance of state noise 
r double Variance of observed noise 
K int Observed offset 

 
The detailed information in the following folder. 

samples/KitagawaModelPMCMCEstimation_knownSequence.m 

2.5.4. Estimation of the state sequence with non-Gaussian noise 

For the model estimation with MCDCTrain, Gaussian noise is assumed as default. 
However, several noises can be specified for the algorithm object using SetStateNoise. 
An example is as follows: 

% Generate the algorithm object. 

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

 

% Generate the noise distribution for the state sequence. 

xdim = size(x0, 2); 

stateNoise = CauchyDistribution(0, q, xdim); 

 

% Set the noise distribution to the algorithm object.  

algorithm.SetStateNoise(stateNoise); 

For the observation sequence, the noise is specified using SetObsNoise in a similar 
way.  

 
Parameters are as follows. “dim” means the dimension of the state or observation 

data.  
Noise distribution and parameters Description 



Reference manual Program Execution 

 - 16 - 

Noise distribution and parameters Description 
CauchyDistribution(m,v,dim) Cauchy distribution 

(Mean m, Variance v) 
ExponentialDistribution(mu,dim) Exponential distribution 

(Mean mu) 
GammaDistribution(a,b,dim) Gamma distribution 

(Shape a, Scale b) 
GeneralizedParetoDistribution(k,sigm

a,theta,dim) 

Generalized Pareto distribution 
(Shape k, Scale sigma, Location theta) 

LaplaceDistribution(location,scale,d

im) 

Laplace distribution 
(Location location, Scale scale) 

NormalDistribution(m,v,dim) Normal distribution 
(Mean m, Variance v) 

TDistribution(nu,dim) t distribution 
(Degree of freedom nu) 

TLocationScaleDistribution(m,v,nu,di

m) 

t location-scale distribution 
(Mean m, Variance v, Degree of freedom nu) 

UniformDistribution(lb,ub,dim) Uniform distribution 
(Lower lb, Upper ub) 

WeibullDistribution(a,b,dim) Weibull distribution 
(Scale a, Shape b) 

 
The detailed information is in the following folder. 

samples/KitagawaModelPMCMCEstimation_nonGaussianNoise.m 

2.5.5. Use of multiple sequences 

An example for use of multiple sequences is as follows: 

% Generate the algorithm object.  

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

 

% Set the multiple sequences to the algorithm object.  

likelihoodCalculator = MultipleKnownSequence(X, xaux, u, Y, q, r, K); 

algorithm.SetLikelihoodCalculator(likelihoodCalculator); 

The parameters for the MultipleKnownSequence class are as follows:  
Parameter Data type Description 

X Cell of 
Dx*T double 

Cell array for state data  
Dx*T matrix for each cell  

xaux Cell of 
Da*T double 

Cell array for additional state data 
Da*T matrix for each cell  

u Cell of 
D*T double 

Cell array for control data 
D*T matrix for each cell 
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Parameter Data type Description 
Y Cell of 

P*T double 
Cell array for observed data  
P*T matrix for each cell  

q double Variance of sate noise 
r double Variance of observed noise 
K int Observed offset 

2.5.6. Estimation with Metropolis-Hastings with Gibbs sampling 

In each EM iteration, either PMCMC or MH with Gibbs sampling algorithm is 
selected with a pre-fixed probability.  The probability of 0 means that MH with Gibbs 
sampling is always selected, while the probability of 1 means that PMCMC is always 
selected. The default is 0.25. 

algorithm = PMCMC2(kernelGeneratorStrategy, mcdcStrategy); 

algorithm.SetPMCMCProbability(1.0); % Don't use MH-Gibbs 
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3. Program Structure 

This chapter explains the program structure of MCDC Tools. 

3.1. File Structure 
MCDC Tools is created as a MAT-Lab program.  The list of program files is as 

follows: 
File name Description 
Algorithm.m Abstract base class that represents 

algorithm used for model estimation. 
Aspect.m Configuration class to set program 

operation. 
BoundedNormalDistribution.m Normal distribution limited within 

positive range. 
CheckGridTransformation.m Ranges check function for grid mapping. 
CompositeLikelihoodCalculator.m Log-likelihood calculation for multiple 

sequences 
ContinuousUnivariateDistribution.m Continuous univariate distribution 
DBA.m DTW Barycenter Averaging 
DBAAlign.m Align the lengths of the multiple 

sequences with DBA 
Distribution.m Abstract base class that represents 

probability distribution. 
ExponentialDistribution.m Exponential distribution. 
FixedModel.m Fixed model without estimation 
FixedValueDistribution.m Distribution with a fixed value 
GPSurface.m Function that requires grid mapping. 
GammaDistribution.m Gamma distribution 
GaussianProcessModel.m State space model with GP estimation 
GaussianProcessModelRotate.m State space model with GP estimation. A 

dimension in the state space is selected 
and used to boost the MCMC iterations.  

GeneralizedParetoDistribution.m Generalized Pareto distribution 
GenericSpline.m Multidimensional spline interpolation 

function.  Use “spapi” function. 
Graphs.m Graph drawing function group. 
GridData.m Grid structure in state space. 
IterationStrategy.m EM iteration strategy 

IterationStrategyDefault.m Use of PMCMC 
IterationStrategyMHGibbs.m Use of MH with Gibbs sampling  
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File name Description 
IterationStrategyProbabilistic.m Selectively use of PMCMC and MH with 

Gibbs sampling with a pre-fixed 
probability. 

Kernel.m Kernel function (abstract base class). 
KernelGenerator.m Kernel function generator (abstract base 

class). 
KnownSequence.m Use of known sequence.  
LaplaceDistribution.m Laplace distribution. 
LikelihoodCalculator.m Likelihood calculation. 
MCDCInput.m Input data of model estimation. 
MCDCMatFile.m Intermediate file output class of model 

estimation. 
MCDCOutput.m Output result of model estimation. 
MCDCRegression.m Regression using the estimated model. 
MCDCStrategy.m Abstract base class that determines 

MCMC’s operations. 
MCDCStrategyChoice1.m Class that determines MCMC’s 

operations.  Without learning mean value 
function, always use anchor model. 

MCDCStrategyChoice1_PSMC.m Class that determines MCMC’s 
operations.  Without learning mean value 
function, always use anchor model. 

MCDCStrategyChoice2.m Class that determines MCMC’s 
operations.  Perform sampling of 
functions from present GP surface used as 
mean value function. 

MCDCStrategyChoice3.m Class that determines MCMC’s 
operations. Perform sampling of functions 
from present GP surface used as mean 
value function. Without learning 
covariance function, use fixed covariance 
matrix. 

MCDCTest.m Likelihood calculation program of 
estimation model. 

MCDCTrain.m Model estimation program. 
ModelFunctions.m Spline function for grid mapping. 
ModelFunctions2.m Spline function for grid mapping. 
ModelKind.m Model kind 
MultipleKnownSequence.m Calculation for multiple known sequences 
NormalDistribution.m Normal distribution. 
PMCMC.m Model estimation algorithm.  Generate 
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File name Description 
state transition function and observed 
function by random sampling from 
Gaussian process.  Use particle marginal 
Metropolis-Hastings (PMCMC) method for 
parameter estimation. 

PMCMC2.m Model estimation algorithm.  Generate 
state transition function and observed 
function by random sampling from 
Gaussian process. Use particle marginal 
Metropolis-Hastings method for 
parameter estimation.  Use one 
dimension only specific to state space for 
covariance function. 

PMCMCParticleFilter.m Particle filter.  Perform ancestor 
sampling to use it by PMCMC method 

PSMC.m Model estimation algorithm.  Generate 
state transition function and observed 
function by random sampling from 
Gaussian process.  Parameter estimation 
is not performed. 

ParticleFilter.m Particle filters. 
PlotGraph.m Graph drawing subroutines.  Used from 

Graphs.m. 
RBFKernel.m RBF kernel.  Use it as a covariance 

function of the Gaussian process. 
RBFKernelGenerator.m RBF kernel function generator. 
RBFKernelGeneratorStrategy.m Abstract base class that determines a 

generating method for RBF kernel 
function. 

RBFKernelGeneratorStrategyChoice1.m RBF kernel function generating algorithm.  
Perform random sampling of kernel 
parameters from prior distribution. 

RBFKernelGeneratorStrategyChoice2.m RBF kernel function generating algorithm.  
Generate kernel parameters by random 
walk from present value. 

SimpleSpline.m Simple spline function for 1-dimensional 
state space with “spline” function.  

SimpleSplineInGrid.m Simple spline function for 1-dimensional 
state space with “spline” function. When 
the transition destination is outside the 
grid, it is pulled back to the end point of 
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File name Description 
the grid. 

SkewTDistribution.m Skewed-t distribution 
TDistribution.m t distribution 
TLocationScaleDistribution.m t location-scale distribution  
TruncatedDistribution.m Distribution truncated by lower and upper 

limits.  
UniformDistribution.m Uniform distribution. 
VectorValuedFunction.m Routines that compile scalar valued 

functions of each dimension to vector 
valued functions. 

WeibullDistribution.m Weibull distribution 
logmvnpdf.m Log multivariate normal distribution 

function by Benjamin Dichter with BSD 
license.  

 
Also, the following sample directories contain program files to perform model 

estimation using MCDC Tools and conduct discrimination experiments for sample data.  
The list of files included in the sample directories are as follows: 
File name Description 
KitagawaModel.m Time series generating function 

by Kitagawa’s model. 
KitagawaModelPMCMC2Estimation.m Kitagawa’s model estimation 

experiment program (use 
PMCMC2 algorithm). 

KitagawaModelPMCMC2Estimation_knownSequence.m Kitagawa’s model estimation 
experiment program with a 
known state sequence.  
(use PMCMC2 algorithm) 

KitagawaModelPMCMC2Estimation_nonGaussianNoise.m Kitagawa’s model estimation 
experiment program with  
non-Gaussian noise.  
(use PMCMC2 algorithm) 

KitagawaModelPMCMC2Estimation_obsFixed.m Kitagawa’s model estimation 
experiment program with a 
known observed sequence.  
(use PMCMC2 algorithm) 

KitagawaModelPMCMC2Estimation_stateFixed.m Kitagawa’s model estimation 
experiment program with a given 
state function.  
(use PMCMC2 algorithm) 

KitagawaModelPMCMCEstimation.m Kitagawa’s model estimation 
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File name Description 
experiment program (use 
PMCMC Algorithm). 

KitagawaModelPSMCEstimation.m Kitagawa’s model estimation 
experiment program (use PSMC 
algorithm). 

KitagawaModel_WriteGraphs.m Kitagawa’s model estimation 
result drawing program. 

LinearStateSpaceModel.m Time series generating function 
by linear state space model. 

LinearStateSpaceModelPSMCEstimation.m Linear state space model 
estimation experiment program 
(use PSMC algorithm). 

LinearStateSpaceModelPMCMC2Estimation.m Linear state space model 
estimation experiment program 
(use PMCMC2 algorithm). 

LinearStateSpaceModelPMCMCEstimation.m Linear state space model 
estimation experiment program 
(use PMCMC algorithm). 

LorenzModel.m Time series generating function 
by Lorenz’s model. 

LorenzModelPMCMC2Estimation.m Lorenz’s model estimation 
experiment program (use 
PMCMC2 algorithm). 

LorenzModelPMCMC2EstimationWithoutAnchor.m Lorenz’s model estimation 
experiment program without 
anchor model.  
(use PMCMC2 algorithm) 

LorenzModelPMCMC2Estimation_knownSequence.m Lorenz’s model estimation 
experiment program with a 
known state sequence.  
(use PMCMC2 algorithm) 

LorenzModelPMCMC2Estimation_obsFixed.m Lorenz’s model estimation 
experiment program with a given 
observation function. 
(use PMCMC2 algorithm) 

LorenzModelPMCMC2Estimation_stateFixed.m Lorenz’s model estimation 
experiment program with a given 
state function.  
(use PMCMC2 algorithm) 

LorenzModelPMCMCEstimation.m Lorenz’s model estimation 
experiment program (use 
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File name Description 
PMCMC algorithm). 

LorenzModelPSMCEstimation.m Lorenz’s model estimation 
experiment program (use PSMC 
algorithm). 

LorenzModel_WriteGraphs.m Lorenz’s model estimation result 
drawing program. 

MotionCapture.m Time series generating function 
from motion capture data. 

MotionCapturePMCMC2Estimation.m Motion capture model estimation 
experiment program (use 
PMCMC2 algorithm). 

MotionCapturePMCMC2Test.m Motion capture class separation 
experiment program. 

MotionCapture_WriteGraphs.m Motions capture model 
estimation result drawing 
program. 

amc_to_matrix.m3 Transfer function from AMC file 
to MATLAB matrix format. 

 
 

                                                
3 This code is originally contained in the CMU Graphics Lab Motion Capture Database (http://mocap.cs.cmu.edu/). 
This is required for the execution of the program. 
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4. License 

Among the experimental sample data in MCDC tools, the samples that use motion 
capture data are executed using data and tools that are published on the following 
website. 

 
CMU Graphics Lab Motion Capture Database 

http://mocap.cs.cmu.edu/ 

Use permission conditions are posted on the website shown below. 

This data is free for use in research projects. 

You may include this data in commercially-sold products,  

but you may not resell this data directly, even in converted form. 

If you publish results obtained using this data, we would appreciate it 

if you would send the citation to your published paper to jkh+mocap@cs.cmu.edu, 

and also would add this text to your acknowledgments section: 

The data used in this project was obtained from mocap.cs.cmu.edu. 

The database was created with funding from NSF EIA-0196217. 

 


