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Small Sample Regime

Basic Problem

Task: estimate mean and covariance matrix from data {xi}.
Di�culties: outlier corrupted observation (heavy-tailed
underlying distribution).
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Sample Average

A straight-forward solution

µ = Ef (x) R = Ef (x−µ)(x−µ)T

⇓ f ← fN

µ̂ =
1

N

N

∑
i=1

xi R̂ =
1

N

N

∑
i=1

(xi − µ̂)(xi − µ̂)T .

Works well for i.i.d. Gaussian distributed data.
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In�uence of Outliers

What if the data is corrupted?

A real-life example: Kalman �lter lost track of the spacecraft
during an Apollo mission because of outlier observation
(caused by system noise).

Example 1: Symmetrically Distributed Outliers

x∼ HeavyTail(1,R)

R =

[
1 0.5
0.5 1

]
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In�uence of Outliers

What if the data is corrupted?

Example 2: Asymmetrically Distributed Outliers

x∼ 0.9N (1,R) +0.1N (µ,R)

µ =

[
5

−5

]
R =

[
1 0.5
0.5 1

]
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More Sophisticated Models

Factor model:

y = µ +Ax+ ε.

Vector ARMA:(
1−

p

∑
i=1

ΦiL
i

)
(yt −µ) =

(
1−

q

∑
i=1

ΘiL
i

)
ut .

VECM: (
1−

p

∑
i=1

ΓiL
i

)
∆yt = ΦDt +Πyt−1 + εt .

State-space model:

yt = Cxt + εt

xt = Axt−1 +ut .
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Warm-up

Recall the Gaussian distribution

f (x) = C det(Σ)−
1
2 exp

(
−1
2
xTΣ−1x

)
.

Negative log-likelihood function

L(Σ) =
N

2
logdet(Σ) +

1

2

N

∑
i=1

xTi Σ
−1xi .

Sample covariance matrix

Σ̂ =
1

N

N

∑
i=1

xix
T
i .
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M-estimator

Minimizer of loss function [Mar-Mar-Yoh'06]:

L(Σ) =
N

2
logdet(Σ) +

N

∑
i=1

ρ

(
xTi Σ

−1xi

)
.

Solution to �xed-point equation:

Σ =
1

N

N

∑
i=1

w
(
xTi Σ

−1xi

)
xix

T
i .

If ρ is di�erentiable

w =
ρ ′

2
.
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Sample Covariance Matrix

SCM can be viewed as:

Σ̂ =
N

∑
i=1

wixix
T
i

with wi = 1
N , ∀i .

MLE of a Gaussian distribution with loss function

N

2
logdet(Σ) +

1

2

N

∑
i=1

xTi Σ
−1xi .

Why is SCM sensitive to outliers? /

Daniel P. Palomar Robust Shrinkage Mean Covariance Estimation 21 / 75



Motivation
Robust Covariance Matrix Estimators
Robust Mean-Covariance Estimators

Small Sample Regime

Introduction
Examples
Unsolved Problems

Sample Covariance Matrix

Consider distance

di =
√
xTi Σ

−1xi .

wi = 1
N

normal samples and
outliers contribute to Σ̂
equally.

Quadratic loss.
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Tyler's M-estimator

Given f (x) → use MLE.

xi ∼ elliptical(0,Σ), what shall we do?

Normalized sample si ,
xi
‖xi‖2

pdf

f (s) = C det(R)−
1

2

(
s
T
R
−1

s

)−K/2

Loss function

N

2
logdet(Σ) +

K

2

N

∑
i=1

log
(
s
T
i Σ−1si

)
︸ ︷︷ ︸

xTi Σ
−1
xi

Tyler [Tyl'J87] proposed covariance estimator Σ̂ as solution to

N

∑
i=1

wixix
T
i = Σ, wi =

K

N
(
xTi Σ−1xi

) .
Why is Tyler's estimator robust to outliers? ,
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Tyler's M-estimator

Consider distance

di =
√
xTi Σ

−1xi .

wi ∝ 1/d2i

Outliers are down-weighted.

Logarithmic loss.

epsilon
contribution

Daniel P. Palomar Robust Shrinkage Mean Covariance Estimation 24 / 75



Motivation
Robust Covariance Matrix Estimators
Robust Mean-Covariance Estimators

Small Sample Regime

Introduction
Examples
Unsolved Problems

Tyler's M-estimator

Tyler's M-estimator solves �xed-point equation

Σ =
K

N

N

∑
i=1

xix
T
i

xTi Σ
−1xi

.

Existence condition: N > K .

No closed-form solution.

Iterative algorithm

Σ̃t+1 =
K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
t xi

Σt+1 = Σ̃t+1/Tr
(
Σ̃t+1

)
.
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Unsolved Problems

Problem 1

What if the mean value is unknown?

Problem 2

How to deal with small sample scenario?

Problem 3

How to incorporate prior information?
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Robust M-estimators

Maronna's M-estimators [Mar'J76]:

1

N

N

∑
i=1

u1
(

(xi −µ)T R−1 (xi −µ)
)

(xi −µ) = 0

1

N

N

∑
i=1

u2
(

(xi −µ)T R−1 (xi −µ)
)

(xi −µ)(xi −µ)T = R.

Special examples:

Huber's loss function.
MLE for Student's t-distribution.
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MLE of the Student's t-distribution

Student's t-distribution with degree of freedom ν :

f (x) = C det(R)−
1
2

(
1+

1

ν
(x−µ)T R−1 (x−µ)

)−K+ν

2

.

Negative log-likelihood

Lν (µ,R) =
N

2
logdet(R)

+
K + ν

2

N

∑
i=1

log
(

ν + (xi −µ)T R−1 (xi −µ)
)
.
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MLE of the Student's t-distribution

Estimating equations

K + ν

N

N

∑
i=1

xi −µ

ν + (xi −µ)T R−1 (xi −µ)
= 0

K + ν

N

N

∑
i=1

(xi −µ)(xi −µ)T

ν + (xi −µ)T R−1 (xi −µ)
= R.

Weight wi (ν) = K+ν

N · 1

ν+(xi−µ)TR−1(xi−µ)
decreases in ν .

Unique solution for ν ≥ 1.
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Joint Mean-Covariance Estimation

Assumption: xi ∼ elliptical(µ0,R0).

Goal: jointly estimate mean and covariance

Robust to outliers.

Easy to implement.

Provable convergence.

A natural idea:

MLE of heavy-tailed distributions.
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Joint Mean-Covariance Estimation

Method: �tting {xi} to Cauchy (Student's t-distribution with
ν = 1) likelihood function.

Conservative �tting.
Trade-o�: robustness ⇔ e�ciency.
Tractability.

R̂→ cR0

c depends on the unknown shape of the underlying distribution
=⇒ estimate R/Tr(R) instead.

Existence condition N > K +1 [Ken'J91].
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Algorithm

No closed-form solution.

Numerical algorithm [Ken-Tyl-Var'J94]:

µt+1 =
∑
N
i=1wi (µt ,Rt)xi

∑
N
i=1wi (µt ,Rt)

Rt+1 =
K +1

N

N

∑
i=1

wi (µt ,Rt)
(
xi −µt+1

)(
xi −µt+1

)T
with

wi (µ,R) =
1

1+ (xi −µ)T R−1 (xi −µ)
.
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Regularization-Known Mean

Problem:

insu�cient
observations

estimator
does not exist

algorithms
fail to converge

Methods:

Diagonal loading.
Penalized or regularized loss function.
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Diagonal Loading

Modi�ed Tyler's iteration [Abr-Spe'C07]

Σ̃t+1 =
K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
t xi

+ρI

Σt+1 = Σ̃t+1/Tr
(
Σ̃t+1

)
.

Provable convergence [Che-Wie-Her'J11].

Systematic way of choosing parameter ρ [Che-Wie-Her'J11].

But without a clear motivation.
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Penalized Loss Function I

Wiesel's penalty [Wie'J12]

h (Σ) = logdet(Σ) +K logTr
(
Σ−1T

)
,

Σ ∝ T minimizes h (Σ).

Penalized loss function

LWiesel (Σ) =
N

2
logdet(Σ) +

K

2

N

∑
i=1

log
(
xTi Σ

−1xi

)
+α

(
logdet(Σ) +K logTr

(
Σ−1T

))
.

Algorithm

Σt+1 =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
t xi

+
2α

N +2α

KT

Tr
(
Σ−1t T

) .
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Penalized Loss Function II

Alternative penalty: KL-divergence

h (Σ) = logdet(Σ) +Tr
(
Σ−1T

)
,

Σ = T minimizes h (Σ).

Penalized loss function

LKL (Σ) =
N

2
logdet(Σ) +

K

2

N

∑
i=1

log
(
xTi Σ

−1xi

)
+α

(
logdet(Σ) +Tr

(
Σ−1T

))
.

Algorithm?
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Questions

Existence & Uniqueness?

Which one is better?

Algorithm convergence?
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Existence and Uniqueness for Wiesel's Shrinkage Estimator

Theorem [Sun-Bab-Pal'J14a]

Wiesel's shrinkage estimator exists a.s., and is also unique up to a
positive scale factor, if and only if the underlying distribution is
continuous and N > K−2α .

Existence condition for Tyler's estimator: N > K

Regularization relaxes the requirement on the number of
samples.
Setting α = 0 (no regularization) reduces to Tyler's condition.
Stronger con�dence on the prior information ⇒ less number of
samples required.
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Existence and Uniqueness for KL-Shrinkage Estimator

Theorem [Sun-Bab-Pal'J14a]

KL-shrinkage estimator exists a.s., and is also unique, if and only if
the underlying distribution is continuous and N > K−2α

Compared with Wiesel's shrinkage estimator:

Share the same existence condition.

Without scaling ambiguity.

Any connection? Which one is better?
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Equivalence

Theorem [Sun-Bab-Pal'J14a]

Wiesel's shrinkage estimator and KL-shrinkage estimator are
equivalent.

Fixed-point equation for KL-shrinkage estimator

Σ =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
xi

+
2α

N +2α
T.

The solution satis�es equality

Tr
(
Σ−1T

)
= K .

Fixed-point equation for Wiesel's shrinkage estimator

Σ =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
xi

+
2α

N +2α

KT

Tr
(
Σ−1T

) .
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Tr
(
Σ−1T

)
= K .

Fixed-point equation for Wiesel's shrinkage estimator

Σ =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
xi

+
2α

N +2α

KT

Tr
(
Σ−1T

) .
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Majorization-minimization

Problem:

minimize
x

f (x)

subject to x ∈X

Majorization-minimization:

xt+1 = arg min
x∈X

g (x|xt)

with

f (xt) = g (xt |xt)
f (x)≤ g (x|xt) ∀x ∈X
f ′ (xt ;d) = g ′ (xt ;d|xt) ∀xt +d ∈X

f (x)

xt

g (x|xt)
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Modi�ed Algorithm for Wiesel's Shrinkage Estimator

Surrogate function

g (Σ|Σt) =
N

2
logdet(Σ) +

K

2

N

∑
i=1

xTi Σ
−1
xi

xTi Σ
−1
t xi

+α

(
logdet(Σ) +K

Tr
(
Σ−1T

)
Tr
(
Σ−1t T

))

Update

Σ̃t+1 =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
t xi

+
2α

N +2α

KT

Tr
(
Σ−1t T

)
Normalization

Σt+1 = Σ̃t+1/Tr
(
Σ̃t+1

)
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Algorithm Convergence

Theorem [Sun-Bab-Pal'J14a]

Under the existence conditions, the modi�ed algorithm for Wiesel's
shrinkage estimator converges to the unique solution.

Proof idea:

Majorization-minimization decreases the value of objective
function.

Normalization does not change the value of objective function.

There is a unique minimizer of the objective function.

Daniel P. Palomar Robust Shrinkage Mean Covariance Estimation 47 / 75



Motivation
Robust Covariance Matrix Estimators
Robust Mean-Covariance Estimators

Small Sample Regime

Shrinkage Robust Estimator with Known Mean
Shrinkage Robust Estimator for Unknown Mean

Algorithm Convergence

Theorem [Sun-Bab-Pal'J14a]

Under the existence conditions, the modi�ed algorithm for Wiesel's
shrinkage estimator converges to the unique solution.

Proof idea:

Majorization-minimization decreases the value of objective
function.

Normalization does not change the value of objective function.

There is a unique minimizer of the objective function.

Daniel P. Palomar Robust Shrinkage Mean Covariance Estimation 47 / 75



Motivation
Robust Covariance Matrix Estimators
Robust Mean-Covariance Estimators

Small Sample Regime

Shrinkage Robust Estimator with Known Mean
Shrinkage Robust Estimator for Unknown Mean

Algorithm for KL-Shrinkage Estimator

Surrogate function

g (Σ|Σt) =
N

2
logdet(Σ) +

K

2

N

∑
i=1

xTi Σ
−1
xi

xTi Σ
−1
t xi

+α
(
logdet(Σ) +Tr

(
Σ−1T

))
Update

Σt+1 =
N

N +2α

K

N

N

∑
i=1

xix
T
i

xTi Σ
−1
t xi

+
2α

N +2α
T

Theorem [Sun-Bab-Pal'J14a]

Under the existence conditions, the algorithm for KL-shrinkage
estimator converges to the unique solution.
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Algorithm convergence of Wiesel's shrinkage estimator

Parameters: K = 10, N = 8.
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Figure: (a) when the existence conditions are not satis�ed with
α0 = 0.96, (b) when the existence conditions are satis�ed with α0 = 1.04.
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Algorithm convergence of KL-shrinkage estimator

Parameters: K = 10, N = 8.
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Figure: (a) when the existence conditions are not satis�ed with α0 = 0.96,
and (b) when the existence conditions are satis�ed with α0 = 1.04.
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Shrinkage Robust Estimator with Known Mean
Shrinkage Robust Estimator for Unknown Mean

Regularization-Unknown Mean

Problem:
µ0 is unknown!

A simple solution: plug-in µ̂

Sample mean
Sample median

But...

Two-step estimation, not jointly optimal.
Estimation error of µ̂ propagates.

To be done: shrinkage estimator for joint mean-covariance
estimation with target (t,T).
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Regularization-Unknown Mean

Method: adding shrinkage penalty h (µ,R) to loss function
(negative log-likelihood of Cauchy distribution).

Design criteria:

h (µ,R) attains minimum at prior (t,T).
h (t,T) = h (t, rT) , ∀r > 0.

Reason:

R can be estimated up to an unknown scale factor.
T is a prior for the parameter R/Tr(R).

Daniel P. Palomar Robust Shrinkage Mean Covariance Estimation 53 / 75



Motivation
Robust Covariance Matrix Estimators
Robust Mean-Covariance Estimators

Small Sample Regime

Shrinkage Robust Estimator with Known Mean
Shrinkage Robust Estimator for Unknown Mean

Regularization-Unknown Mean

Proposed penalty function

h (µ,R) = α
(
K log

(
Tr
(
R−1T

))
+ logdet(R)

)
+ γ log

(
1+ (µ− t)T R−1 (µ− t)

)
Proposition [Sun-Bab-Pal'J14b]

(t, rT) , ∀r > 0 are the minimizers of h (µ,R).
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Regularization-Unknown Mean

Resulting optimization problem:

minimize
µ,R�0

(K +1)

2

N

∑
i=1

log
(
1+ (xi −µ)T R−1 (xi −µ)

)
+α
(
K log

(
Tr
(
R−1T

))
+ logdet(R)

)
+γ log

(
1+(µ−t)T R−1 (µ−t)

)
+
N

2
logdet(R) .

A minimum satis�es the stationary condition ∂Lshrink(µ,R)
∂ µ

= 0

and ∂Lshrink(µ,R)
∂R

= 0.
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Regularization-Unknown Mean

di (µ,R) =

√
(xi −µ)T R−1 (xi −µ),

dt (µ,R) =

√
(t−µ)T R−1 (t−µ).

wi (µ,R) = 1
1+d2i (µ,R)

, wt (µ,R) = 1
1+d2

t
(µ,R)

.

Stationary condition:

R =
K +1

N +2α

N

∑
i=1

wi (µ,R)(xi −µ)(xi −µ)T

+
2γ

N+2α
wt (µ,R)(µ− t)(µ− t)T +

2αK

N+2α

T

Tr(R−1T)

µ =
(K +1)∑

N
i=1

wi (µ,R)xi +2γwt (µ,R)t

(K +1)∑
N
i=1

wi (µ,R) +2γwt (µ,R)
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Existence and Uniqueness

Theorem [Sun-Bab-Pal'J14b]

Assuming continuous underlying distribution, the estimator exists
under either of the following conditions:
(i) if γ > γ1, then α > α1,
(ii) if γ2 < γ ≤ γ1, then α > α2 (γ),
where

α1 =
1

2
(K −N) ,

α2 (γ) =
1

2

(
K+1−N−2γ +N−K−1

N−1

)
,

and γ1 = 1
2 (K +1), γ2 = 1

2 (K +1−N).
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Existence and Uniqueness

Theorem [Sun-Bab-Pal'J14b]

The shrinkage estimator is unique if γ ≥ α .

α

γ
γ2

α1

γ1

α2 (γ)
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Algorithm in µ and R

Surrogate function

L(µ,R|µt ,Rt) = K+1

2
∑wi (µt ,Rt)(xi −µ)T R−1 (xi −µ)

+γwt (µt ,Rt)(t−µ)T R−1 (t−µ)

+
(
N
2

+ α
)
logdet(R) + αK

Tr(R−1T)
Tr(R−1t T)

Update

µt+1 =
(K +1)∑

N
i=1

wi (µt ,Rt)xi +2γwt (µt ,Rt)t

(K +1)∑
N
i=1

wi (µt ,Rt) +2γwt (µt ,Rt)

Rt+1 =
K +1

N +2α

N

∑
i=1

wi (µt ,Rt)
(
xi −µt+1

)(
xi −µt+1

)T
+

2γ

N+2α
wt (µt ,Rt)

(
t−µt+1

)(
t−µt+1

)T
+

2αK

N+2α

T

Tr
(
R
−1
t T

)
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Algorithm in µ and R

Theorem [Sun-Bab-Pal'J14b]

Under the existence conditions, the algorithm in µ and R for the
proposed shrinkage estimator converges to the unique solution.
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Algorithm in Σ

Consider case α = γ , apply transform

Σ =

[
R+ µµT µ

µT 1

]
x̄i = [xi ;1] , t̄ = [t;1]

Equivalent loss function

Lshrink (Σ) =

(
N

2
+ α

)
logdet(Σ) +

K +1

2

N

∑
i=1

log
(
x̄
T
i Σ−1x̄i

)
+ αK log

(
Tr
(
S
TΣ−1ST

))
+ α log

(
t̄
TΣ−1t̄

)
with S =

[
IK

01×K

]
.

Lshrink (Σ) is scale-invariant.
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Algorithm in Σ

Surrogate function

L(Σ|Σt) =

(
N

2
+ α

)
logdet(Σ) +

K +1

2

N

∑
i=1

x̄Ti Σ
−1
x̄i

x̄Ti Σ
−1
t x̄i

+ α

(
K

Tr
(
STΣ−1ST

)
Tr
(
STΣ−1t ST

) +
t̄TΣ−1t̄

t̄TΣ−1t t̄

)

Update

Σ̃t+1 =
K +1

N +2α

N

∑
i=1

x̄i x̄
T
i

x̄Ti Σ−1t x̄i

+
2α

N +2α

 KSTST

Tr
(
STΣ−1t ST

) +
t̄̄tT

t̄TΣ−1t t̄


Σt+1= Σ̃t+1/

(
Σ̃t+1

)
K+1,K+1
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Algorithm in Σ

Theorem [Sun-Bab-Pal'J14b]

Under the existence conditions, which simpli�es to N > K +1−2α

for α = γ , the algorithm in Σ for the proposed shrinkage estimator
converges to the unique solution.
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Simulation

Parameters: K = 10

µ0 = 0.1×1K×1

(R0)ij = 0.8|i−j |

Error measurement: KL-distance

err
(

µ̂, R̂
)
= E

{
DKL

(
N
(

µ̂, R̂
)
‖N (µ0,R0)

)
+DKL

(
N (µ0,R0)

∥∥∥N (
µ̂, R̂

))}
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Performance Comparison for Gaussian
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Performance Comparison for t-distribution
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Performance Comparison for Corrupted Gaussian
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Real Data Simulation

Minimum variance portfolio.

Training : S&P 500 index components weekly log-returns,
K = 40.

Estimate R
Construct portfolio weights w

Parameter selection: choose α yields minimum variance on
validation set.

Collect half a year portfolio returns.

· · · · · ·train validate test
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Summary

In this talk, we have discussed

Robust mean-covariance estimation for heavy-tailed
distributions.
Shrinkage estimation in small sample scenario.

Future work

Parameter tuning.
Structured covariance estimation.
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For more information visit:

http://www.ece.ust.hk/~palomar
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