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Introduction

Wireless sensor network

Spatially distributed autonomous sensors to

� monitor physical or environmental conditions (such as temperature,
sound, pressure, etc.) ,

� cooperatively pass their data through the network to a main
location.
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Introduction

WSN can be either :

� single-hop wireless transmission : popular in short-range
applications, such as smart homes

� multi-hop wireless transmission (ad hoc) : more interesting due to
its high flexibility and ability to support long-range, large scale, and
highly distributed applications

After collecting information from the environment, sensors need to transmit
aggregated data to gateways or Fusion Centers (FCs).
⇒ Important to ensure that every sensor can communicate with the FCs
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Introduction

A sufficient condition for reliable information transmission in WSNs
is full connectivity of the network.

Definition Full connectivity

A network is said to be fully connected if every pair of nodes can
communicate with each other, either directly or via intermediate
relay nodes.

� Single-hop : Full connectivity is achieved if there exist a
wireless link between each node and at least one gateways

� Multi-hop (ad hoc) : situation more complicated since each
single node contributes to the connectivity of the entire
network

→֒ depends on spatial density, transmission/ reception

capabilities, characteristic of the wireless channel, etc...
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Introduction - Existing Works on Connectivity

1. Purely geometric link model : 2 nodes are connected if they are not
further apart than a certain threshold distance r0
 (Chen et al., 1989), (Piret et al. , 1991), (Dousse et al. , 2006) [Percolation

theory]

2. Shadow fading link model : consider the randomness nature of the
wireless channel induced for example by shadowing effects that are
caused by obstacles (more realistic)
 (Orriss et al, 2003), (Bettstetter et al, 2004), (Dardari et al, 2007), (Zannella

et al. , 2009)
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2. Shadow fading link model : consider the randomness nature of the
wireless channel induced for example by shadowing effects that are
caused by obstacles (more realistic)
 (Orriss et al, 2003), (Bettstetter et al, 2004), (Dardari et al, 2007), (Zannella

et al. , 2009)

Propose some extensions of results from Shadow fading link model by
incorporating random survival time of sensors due to power constraints
and/or failure.

Joint work with Gareth Peters, Ido Nevat and Laurent Clavier
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Spatial Node Distribution

Spatial distribution of the nodes is given by a homogeneous Poisson point
process of density λ per unit area.

� Number of nodes NΩ in space Ω of size ‖Ω‖ follows a Poisson
distribution, i.e.

NΩ ∼ Po(λ‖Ω‖)
� The random location of the n-th node is denoted by

xn|NΩ ∼ U [Ω]

Illustration of Homogeneous Poisson distributed nodes
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Wireless Channel Model

A wireless channel in which transmission of signal is subject to path-loss
and shadowing is considered.
⇒ The power loss between the i-th and j-th nodes is a random variable
(R.V.) defined as

Lxi,xj
= k0 + k1 logR(xi,xj) + S

with :

� k0 and k1 are known propagation constants

� R(xi,xj) is the distance between the 2 randomly distributed nodes

� S is a R.V. representing the shadowing effect, which is generally
assumed to be normal with zero mean and variance σ2
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Sensor Survival Time

Assumptions :

� The network is swithed on at time t = 0 and all nodes have a
survival time (due to battery life and/or failure) relative to
t = 0.

� The i-th node at location xi has a survival time denoted by Ti

which is considered as R.V. with distribution FTi - if t < Ti

then node i is active, otherwise this node is inactive.

� Survival times of each sensor are independent and identically
distributed.
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Connectivity Study

Definition 1 - l-audibility

At time t = 0, the intial l-audible set of nodes given the reference node
location xi ∈ Ω is defined by

D0 (xi) = {xk : xk ∈ Ω is l audible with xi}
= {xk : {Lxi,xk

≤ l} ∩ {xk ∈ Ω} , ∀k ∈ {1, . . . , NΩ}} .

For t > 0 the number of audible nodes reduces due to the survival
process that each node is subject to. This results in the l-audible set for a
reference node at location xi ∈ Ω being defined at time t by

Dt (xi) = D0 (xi) ∩ {Ti > t} ∩ {xk : Tk > t, ∀k ∈ {1, . . . , NΩ}}

The number of l-audible nodes at time t in some sub-region A ⊆ Ω is
defined as :

NA(t) =

NA∑

k=1

1 [xk ∈ Dt (xi)]
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Connectivity Study

Study of the probability density function of the distance between a pair of
l-audible nodes at a given time t

fRxi,xj
(τ)|xj∈D0(xi) (r) = λ(τ)δ0(dr) + (1 − λ(τ))fRxi,xj

(t=0)|xj∈D0(xi) (r)

where

λ(τ) = 1− FTxi
(τ)F Txj

(τ) [ Complentary CDFs Survival Time ]

and

fRxi,xj
(t=0)|xj∈D0(xi) (r) = r exp

(

− 2

k1

(

l − k0 +
σ2

k1

))

× erfc

(
k0 − l + k1 log (r)√

2σ

)

,
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Connectivity Study

Study of the probability density function of the distance between a pair of
l-audible nodes at a given time t [l = 0, k1 = 20, k0 = −10]

Quant. of Dist. betw. 2 connected nodes
Survival Time FTi(t) γ(t) | P(R(t) ≤ γ(t)) = 0.95
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As the variance of the shadowing increases, node can establish links to
neighbors that are further away.
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Connectivity Study

Study of the probability distribution of the number of connected
neighbors

� Number of l-audible neighbors in some region A ⊆ Ω of a reference
node xi is called its degree NA(τ)

� We derive its probability distribution, which is :

P (NA(τ) = n) =

∞∑

nA=n

(
nA

n

)

p(τ)n(1 − p(τ))nA−n
P (NA(0) = nA)

= Po(p(τ)λ‖A‖) [From Thinning principle]

with

p(τ) := P (xk ∈ D0(xi)|Txi
> τ, Txk

> τ)
︸ ︷︷ ︸

Proba of having a connected link

⇒ Closed-form expression derived

FTxk
(τ)F Txi

(τ)

Page 14/27



Connectivity Study

Study of the probability distribution of the number of connected neighbors
⇒ Useful quantity for network design !

Proba Isolated Node τ∗ = inf {τ : P(NA(τ ) ≤ 2) = 0.8}
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� P(NA(τ ) = 0) ր when τ ր

� The minimum of time for which the number of connected neighbors
becomes dramatically low (≤ 2) increases when the transmitted power or
the node density increases

Page 15/27



Perspectives

Conclusion

� Study the connectivity by taking into account the randomness
of the wireless channel as well as the survival time of the
sensor

• Derivation of the pdf of the distance between two connected
nodes

• Derivation of the pdf of the number of nodes connected in
some sub-region of the space.

On-going and Future works

� Derive some bounds on the probability of having a fully
connected network by using the derived probability of having
one isolated node (P(NA(τ) = 0))

� Consider that the sensor can recharge its battery

� Introduce some spatial dependency : Recharge can take longer
in some region of the space (dark vs sunny regions)...
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Introduction

Wireless sensor networks (WSNs) : Composed of a large numbers of
low-cost, low-power, densely distributed, and possibly heterogeneous
sensors.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x-coord inate [m]

y
-c

o
o
rd

in
a
te

[m
]

 

 
Sensors

Targets

⇒ Makes possible energy emitting source !
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Problem Formulation

� Signal intensity measurements are very convenient and
economical to localize a target,
→֒ no additional sensor functionalities and measurement features, such as

direction of arrival (DOA) or time-delay of arrival (TDOA)

� Typical WSN has limited resources (energy and bandwidth) 7→
important to limit the communication with the network.
→֒ often desirable that only binary or multiple bit quantized data be

transmitted from local sensors to the fusion center (processing node).

� The localization algorithm has to consider the imperfect
nature of imperfect wireless channels between the local sensors
and the fusion center
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Existing Localization algorithm in WSN

1. Single source :

- [Li & Hu, 2003] : a least -square method based on the energy
ratios between sensors with analog measurements.

- [Niu & Varshney, 2006] : a maximum likelihood using multi-bit
sensor.

- [Masazade et al., 2010] : importance sampler to approximate
posterior distribution given quantized data.

- [Ozdemir et al., 2010] : a maximum likelihood with imperfect
communication channel and quantized data.

2. Multiple sources [known number of sources] :

- [Sheng & Hu, 2005] :a maximum likelihood with perfect
channel and analog measurement.

Aim : derive an inference algorithm for an unknown number of
sources given quantized data with imperfect wireless channels

(Param. of interest : K and xK =
[
P1, x1, y1, . . . , PK , xK , yK

]T
).

Joint work with Gareth Peters, Ido Nevat and T. L. Thu Nguyen
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System Model

Received Signal at the i-th sensor

si = ai + ni

where the measurement noise, ni, is Gaussian noise, i.e., ni ∼ N (0, σ2) and

ai =

K∑

k=1

P
1/2
k

(
d0

di,k

)n
2

Pk : k-th source signal power at a reference distance d0
n Signal decay and di,k distance between the i-th sensor and the k-th target
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System Model

Quantization Stage at the i-th sensor
Transforms its input si to its output bi through a mapping : R 7→ {0, . . . , L− 1}
such that

bi =







0 λi,0 ≤ si < λi,1

1 λi,1 ≤ si < λi,2

...
...

L− 1 λi,L−1 ≤ si < λi,L

with λi,0 = −∞ and λi,L = +∞.
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System Model

Wireless Communication from the i-th sensor to the FC
Quantized observation is transmitted to the fusion center through an imperfect
channel which may introduce transmission errors.
The probability of a received observation zi taking a specific value j, given the
targets’ parameters, x, can be written as :

p(zi = j|x) =
L−1∑

m=0

p(zi = j|bi = m)
︸ ︷︷ ︸

known channel statistics

p(bi = m|x) (1)
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Bayesian Framework

In this work, we are interested in estimating :

� unknown number of sources in the region, K∗

� the K∗ sources’ parameters (locations and transmitted powers)

⇔ joint model selection and parameter estimation problem

Indeed, we have :

� a collection of K competing models {Mk}k∈{1,...,K} (which
corresponds to the number of sources)

� a vector of parameters associated with each model

xk =
[
P1, x1, y1, . . . , Pk, xk, yk

]T

⇒ Propose a Bayesian solution
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Bayesian Framework

Bayesian procedure proceeds from :

� a prior distribution over the collection of models, p(Mk),

� a prior distribution for the parameters of each model, p(xk|Mk),

� a likelihood distribution p(z|xk,Mk)

Thus,

1 Model choice one typically employs the maximum a posteriori (MAP)

k
∗ = argmax

k
{p(Mk|z)}

= argmax
k

{p(z|Mk)p(Mk)}

where

p(z|Mk) =

∫

Θk

p(z|xk,Mk)p(xk|Mk)dxk

2 Param. Estimate The estimate of the parameters can be deduced from
the posterior distribution associated with the model Mk∗ , i.e.
p(xk∗ |z,Mk∗)

Unfortunately both p(z|Mk) and p(xk∗ |z,Mk∗) are intractable !

⇒ Propose to use advanced Monte-Carlo methods (SMC sampler) in order to
have an accurate approximation of both quantities.
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Proposed Bayesian Solution

M1: 1 source
p̂(θ1|z,M1)
p̂(z|M1)

p̂(M1|z)

k⋆ = argmax p̂(Mk|z)
θ⋆ =

∫
θp̂(θ|z,Mk⋆)dθ

MK : K sources
p̂(θK |z,MK)
p̂(z|MK)

p̂(MK |z)

SMC Sampler

SMC Sampler

Derive an Sequential Monte Carlo sampler algorithm :

� Sequential algorithm which are able to deal with complex

high-dimensional and/or multimodal posterior distribution

• by using MCMC methodology
• by introducing a sequence of progressive annealed distribution

(start with a distribution easy to sample from to the posterior of interest)

� produces a set of weighted samples that approximates the posterior
distribution p(xk|z,Mk) and gives an unbiased estimate of p(z|Mk)

� more details about this algorithm in my tomorrow’s talk
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Numerical Simulations

Single Source Scenario

Other parameters of the scenario :

� a signal decay exponent n = 2,

� a reference distance as and d0 = 1,

� the region of interest is 100× 100m field

� the sensors are uniformly deployed in a grid .
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Numerical Simulations

Single Source Scenario

SMC Importance
Recycling Sampler

[Masazade et al., 2010]

N = 50 0.0647 (0.0160) 0.1563 (0.1026)
25 N = 100 0.0527 (0.0112) 0.1181 (0.0870)

Iter. N = 200 0.0456 (0.0082) 0.0943 (0.0715)

N = 50 0.0543 (0.0131) 0.1159 (0.0796)
50 N = 100 0.0449 (0.0084) 0.0908 (0.0541)

Iter. N = 200 0.0399 (0.0064) 0.0737 (0.0601)

N = 50 0.0456 (0.0077) 0.0900 (0.0589)
100 N = 100 0.0406 (0.0073) 0.0735 (0.0413)
Iter. N = 200 0.0367 (0.0053) 0.0611 (0.0427)

Accuracy to approximate the posterior distribution p(x1|z) in terms of
the Kolmogorov-Smirnov distance (mean and standard deviation in

parentheses).

⇒ Significant improvement compared to existing IS algo. !
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Numerical Simulations

Multiple Source Scenario

Parameters of the scenario :

� 4 sources in the ROI

� a signal decay exponent n = 2,

� a reference distance as and d0 = 1,

� the region of interest is 100× 100m field

� the sensors are uniformly deployed in a grid .
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Numerical Simulations

Multiple Source Scenario

Accuracy on the model choice :

σ2 = 1 σ2 = 0.05
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Number of times that each model has been selected with the approximated

model posterior from the SMC sampler with different number of quantization

levels

⇒ Proposed algorithm clearly able to detect that there are 4

sources in the ROI !
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Numerical Simulations

Multiple Source Scenario

Accuracy on the source localization :
σ2 = 1 σ2 = 0.05
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MSE for the source locations with 6= number of quantization levels L

We derive the posterior Cramér-Rao bound for this problem

⇒ As expected, the accuracy on the localization improves as the number of
quantization levels ր

⇒ Empirically demonstrate the good localization performance of the
proposed algorithm
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Conclusion and Future Works

Conclusion

� Propose efficient Bayesian algorithm to
• estimate the number of source in the region of interet
• estimate their locations as well as their transmitted powers

� Derive the posterior Cramér-Rao bound associated to the
sources’ parameters estimation

Future works

� Optimal sequential sensor selection scheme to avoid the
transmission of information from all the sensors

� Utilize the derived posterior Cramér-Rao bound to optimize
• placement of the sensors
• quantization thresholds of the sensors
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