Connectivity and Localization in Wireless Sensor Networks

François Septier

Institut Mines-Télécom/Télécom Lille/LAGIS UMR CNRS 8219

STM2014/CSM2014 July 28-31 2014, ISM

Introduction

Wireless sensor network

Spatially distributed autonomous sensors to

- monitor physical or environmental conditions (such as temperature, sound, pressure, etc.) ,
- cooperatively pass their data through the network to a main location.

Introduction

WSN can be either :

- single-hop wireless transmission : popular in short-range applications, such as smart homes
- multi-hop wireless transmission (ad hoc) : more interesting due to its high flexibility and ability to support long-range, large scale, and highly distributed applications

After collecting information from the environment, sensors need to transmit aggregated data to gateways or Fusion Centers (FCs).

Page 3/27

Connectivity in Wireless Sensor Network

- Introduction to connectivity
- System Model
- Connectivity Study

Multiple Source Localization in WSN

- Introduction
- Problem Formulation
- Proposed Bayesian solution

Connectivity in Wireless Sensor Network

- Introduction to connectivity
- System Model
- Connectivity Study

2 Multiple Source Localization in WSN

- Introduction
- Problem Formulation
- Proposed Bayesian solution

Introduction

A sufficient condition for reliable information transmission in WSNs is **full connectivity** of the network.

Definition Full connectivity

A network is said to be fully connected if every pair of nodes can communicate with each other, either directly or via intermediate relay nodes.

- Single-hop : Full connectivity is achieved if there exist a wireless link between each node and at least one gateways
- Multi-hop (ad hoc) : situation more complicated since each single node contributes to the connectivity of the entire network

 \hookrightarrow depends on spatial density, transmission/ reception capabilities, characteristic of the wireless channel, etc...

Introduction - Existing Works on Connectivity

- 1. Purely geometric link model : 2 nodes are connected if they are not further apart than a certain threshold distance $r_0 \sim$ (Chen et al., 1989), (Piret et al., 1991), (Dousse et al., 2006) [Percolation theory]
- 2. <u>Shadow fading link model</u> : consider the randomness nature of the wireless channel induced for example by shadowing effects that are caused by obstacles (more realistic)

 \rightsquigarrow (Orriss et al, 2003), (Bettstetter et al, 2004), (Dardari et al, 2007), (Zannella et al. , 2009)

Introduction - Existing Works on Connectivity

- 1. Purely geometric link model : 2 nodes are connected if they are not further apart than a certain threshold distance $r_0 \rightarrow$ (Chen et al., 1989), (Piret et al., 1991), (Dousse et al., 2006) [Percolation theory]

Propose some extensions of results from *Shadow fading link model* by incorporating random survival time of sensors due to power constraints and/or failure.

Joint work with Gareth Peters, Ido Nevat and Laurent Clavier

Spatial Node Distribution

Spatial distribution of the nodes is given by a homogeneous Poisson point process of density λ per unit area.

• Number of nodes N_{Ω} in space Ω of size $\|\Omega\|$ follows a Poisson distribution, i.e.

 $N_{\Omega} \sim \mathcal{P}o(\lambda \|\Omega\|)$

The random location of the n-th node is denoted by

 $\mathbf{x}_n | N_{\Omega} \sim \mathcal{U}[\Omega]$

Illustration of Homogeneous Poisson distributed nodes

Wireless Channel Model

A wireless channel in which transmission of signal is subject to path-loss and shadowing is considered.

 \Rightarrow The power loss between the i-th and j-th nodes is a random variable (R.V.) defined as

$$L_{\mathbf{x}_i,\mathbf{x}_j} = k_0 + k_1 \log R(\mathbf{x}_i,\mathbf{x}_j) + S$$

with :

- k_0 and k_1 are known propagation constants
- $R(\mathbf{x}_i, \mathbf{x}_j)$ is the distance between the 2 randomly distributed nodes
- S is a R.V. representing the shadowing effect, which is generally assumed to be normal with zero mean and variance σ^2

Sensor Survival Time

Assumptions :

- The network is swithed on at time t = 0 and all nodes have a survival time (due to battery life and/or failure) relative to t = 0.
- The *i*-th node at location \mathbf{x}_i has a survival time denoted by T_i which is considered as R.V. with distribution F_{T_i} if $t < T_i$ then node *i* is active, otherwise this node is inactive.
- Survival times of each sensor are independent and identically distributed.

Definition 1 - *l*-audibility

At time t = 0, the initial *l*-audible set of nodes given the reference node location $\mathbf{x}_i \in \Omega$ is defined by

$$\begin{split} D_0\left(\mathbf{x}_i\right) &= \left\{\mathbf{x}_k : \mathbf{x}_k \in \Omega \text{ is } l \text{ audible with } \mathbf{x}_i\right\} \\ &= \left\{\mathbf{x}_k : \left\{L_{\mathbf{x}_i, \mathbf{x}_k} \leq l\right\} \cap \left\{\mathbf{x}_k \in \Omega\right\}, \forall k \in \{1, \dots, N_\Omega\}\right\}. \end{split}$$

For t>0 the number of audible nodes reduces due to the survival process that each node is subject to. This results in the *l*-audible set for a reference node at location $\mathbf{x}_i \in \Omega$ being defined at time t by

$$D_t(\mathbf{x}_i) = D_0(\mathbf{x}_i) \cap \{T_i > t\} \cap \{\mathbf{x}_k : T_k > t, \forall k \in \{1, \dots, N_\Omega\}\}$$

The number of $l\mbox{-audible}$ nodes at time t in some sub-region $A\subseteq \Omega$ is defined as :

$$N_A(t) = \sum_{k=1}^{N_A} \mathbb{1} \left[\mathbf{x}_k \in D_t \left(\mathbf{x}_i \right) \right]$$

Page 11/27

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Study of the probability density function of the distance between a pair of $l\mbox{-}audible$ nodes at a given time t

$$\begin{split} f_{R_{\mathbf{x}_{i},\mathbf{x}_{j}}(\tau)|\mathbf{x}_{j}\in D_{0}(\mathbf{x}_{i})}\left(r\right) &= \lambda(\tau)\delta_{0}(dr) + (1-\lambda(\tau))f_{R_{\mathbf{x}_{i},\mathbf{x}_{j}}(t=0)|\mathbf{x}_{j}\in D_{0}(\mathbf{x}_{i})}\left(r\right) \\ \text{where} \end{split}$$

$$\lambda(\tau) = 1 - \overline{F}_{T_{\mathbf{x}_{i}}}(\tau)\overline{F}_{T_{\mathbf{x}_{j}}}(\tau) \quad [\text{ Complentary CDFs Survival Time }]$$

and

$$\begin{split} f_{R_{\mathbf{x}_{i},\mathbf{x}_{j}}(t=0)|\mathbf{x}_{j}\in D_{0}(\mathbf{x}_{i})}\left(r\right) &= r\exp\left(-\frac{2}{k_{1}}\left(l-k_{0}+\frac{\sigma^{2}}{k_{1}}\right)\right) \\ &\times \operatorname{erfc}\left(\frac{k_{0}-l+k_{1}\log\left(r\right)}{\sqrt{2}\sigma}\right), \end{split}$$

Page 12/27

Connectivity Study

Study of the probability density function of the distance between a pair of l-audible nodes at a given time $t \ [l = 0, \ k_1 = 20, \ k_0 = -10]$

Survival Time $F_{T_i}(t)$

Quant. of Dist. betw. 2 connected nodes $\gamma(t) \mid \mathbb{P}(R(t) \leq \gamma(t)) = 0.95$

As the variance of the shadowing increases, node can establish links to neighbors that are further away.

Connectivity Study

Study of the probability distribution of the number of connected neighbors

- Number of *l*-audible neighbors in some region $A \subseteq \Omega$ of a reference node \mathbf{x}_i is called its degree $N_A(\tau)$
- We derive its probability distribution, which is :

$$\mathbb{P}(N_A(\tau) = n) = \sum_{n_A = n}^{\infty} {n_A \choose n} p(\tau)^n (1 - p(\tau))^{n_A - n} \mathbb{P}(N_A(0) = n_A)$$

= $\mathcal{P}o(p(\tau)\lambda ||A||)$ [From Thinning principle]

with

$$p(\tau) := \underbrace{\mathbb{P}\left(\mathbf{x}_k \in D_0(\mathbf{x}_i) | T_{\mathbf{x}_i} > \tau, T_{\mathbf{x}_k} > \tau\right)}_{\mathbf{T}_{\mathbf{x}_k}} \overline{F}_{T_{\mathbf{x}_k}}(\tau) \overline{F}_{T_{\mathbf{x}_i}}(\tau)$$

Proba of having a connected link

 \Rightarrow Closed-form expression derived

Page 14/27

Connectivity Study

Study of the probability distribution of the number of connected neighbors \Rightarrow Useful quantity for network design!

• $\mathbb{P}(N_A(\tau) = 0) \nearrow$ when $\tau \nearrow$

The minimum of time for which the number of connected neighbors becomes dramatically low (≤ 2) increases when the transmitted power or the node density increases

Perspectives

Conclusion

- Study the connectivity by taking into account the randomness of the wireless channel as well as the survival time of the sensor
 - Derivation of the pdf of the distance between two connected nodes
 - Derivation of the pdf of the number of nodes connected in some sub-region of the space.

On-going and Future works

- Derive some bounds on the probability of having a fully connected network by using the derived probability of having one isolated node ($\mathbb{P}(N_A(\tau) = 0)$)
- Consider that the sensor can recharge its battery
- Introduce some spatial dependency : Recharge can take longer in some region of the space (dark vs sunny regions)...

Connectivity in Wireless Sensor Network

- Introduction to connectivity
- System Model
- Connectivity Study

2 Multiple Source Localization in WSN

- Introduction
- Problem Formulation
- Proposed Bayesian solution

Introduction

Wireless sensor networks (WSNs) : Composed of a large numbers of low-cost, low-power, densely distributed, and possibly heterogeneous sensors.

 \Rightarrow Makes possible energy emitting source!

Page 18/27

Problem Formulation

 Signal intensity measurements are very convenient and economical to localize a target,

 \hookrightarrow no additional sensor functionalities and measurement features, such as direction of arrival (DOA) or time-delay of arrival (TDOA)

- Typical WSN has limited resources (energy and bandwidth) → important to limit the communication with the network.
 → often desirable that only binary or multiple bit quantized data be transmitted from local sensors to the fusion center (processing node).
- The localization algorithm has to consider the imperfect nature of imperfect wireless channels between the local sensors and the fusion center

Existing Localization algorithm in WSN

- 1. Single source :
 - [Li & Hu, 2003] : a least -square method based on the energy ratios between sensors with analog measurements.
 - [Niu & Varshney, 2006] : a maximum likelihood using multi-bit sensor.
 - [Masazade et al., 2010] : importance sampler to approximate posterior distribution given quantized data.
 - [Ozdemir et al., 2010] : a maximum likelihood with imperfect communication channel and quantized data.
- 2. Multiple sources [known number of sources] :
 - [Sheng & Hu, 2005] :a maximum likelihood with perfect channel and analog measurement.

Aim : derive an inference algorithm for an unknown number of sources given quantized data with imperfect wireless channels (Param. of interest : K and $\mathbf{x}_{K} = [P_{1}, x_{1}, y_{1}, \dots, P_{K}, x_{K}, y_{K}]^{T}$).

Joint work with Gareth Peters, Ido Nevat and T. L. Thu Nguyen Page 20/27

System Model

Received Signal at the *i*-th sensor

 $s_i = a_i + n_i$

where the measurement noise, n_i , is Gaussian noise, i.e., $n_i \sim \mathcal{N}(0, \sigma^2)$ and

$$a_{i} = \sum_{k=1}^{K} P_{k}^{1/2} \left(\frac{d_{0}}{d_{i,k}}\right)^{\frac{n}{2}}$$

 P_k : k-th source signal power at a reference distance d_0

System Model

Quantization Stage at the *i*-th sensor

Transforms its input s_i to its output b_i through a mapping : $\mathbb{R} \mapsto \{0, \dots, L-1\}$ such that

$$b_{i} = \begin{cases} 0 & \lambda_{i,0} \leq s_{i} < \lambda_{i,1} \\ 1 & \lambda_{i,1} \leq s_{i} < \lambda_{i,2} \\ \vdots & \vdots \\ L - 1 & \lambda_{i,L-1} \leq s_{i} < \lambda_{i,L} \end{cases}$$

with $\lambda_{i,0} = -\infty$ and $\lambda_{i,L} = +\infty$.

System Model

Wireless Communication from the *i*-th sensor to the FC

Quantized observation is transmitted to the fusion center through an imperfect channel which may introduce transmission errors.

The probability of a received observation z_i taking a specific value j, given the targets' parameters, \mathbf{x} , can be written as :

$$p(z_i = j | \mathbf{x}) = \sum_{m=0}^{L-1} \underbrace{p(z_i = j | b_i = m)}_{\text{known channel statistics}} p(b_i = m | \mathbf{x})$$
(1)

Bayesian Framework

In this work, we are interested in estimating :

- unknown number of sources in the region, K^*
- the K^* sources' parameters (locations and transmitted powers)

 \Leftrightarrow joint model selection and parameter estimation problem

Indeed, we have :

- a collection of *K* competing models {*M*_k}_{k∈{1,...,K}} (which corresponds to the number of sources)
- a vector of parameters associated with each model $\mathbf{x}_k = \begin{bmatrix} P_1, x_1, y_1, \dots, P_k, x_k, y_k \end{bmatrix}^T$

 \Rightarrow Propose a Bayesian solution

Bayesian Framework

Bayesian procedure proceeds from :

- a prior distribution over the collection of models, $p(\mathcal{M}_k)$,
- a prior distribution for the parameters of each model, $p(\mathbf{x}_k|\mathcal{M}_k)$,
- a likelihood distribution $p(\boldsymbol{z}|\mathbf{x}_k, \mathcal{M}_k)$

Thus,

1 Model choice one typically employs the maximum a posteriori (MAP)

$$k^* = \arg \max_{k} \{ p(\mathcal{M}_k | \boldsymbol{z}) \}$$

=
$$\arg \max_{k} \{ p(\boldsymbol{z} | \mathcal{M}_k) p(\mathcal{M}_k) \}$$

where

$$p(\boldsymbol{z}|\mathcal{M}_k) = \int_{\Theta_k} p(\boldsymbol{z}|\mathbf{x}_k, \mathcal{M}_k) p(\mathbf{x}_k|\mathcal{M}_k) d\mathbf{x}_k$$

2 **Param. Estimate** The estimate of the parameters can be deduced from the posterior distribution associated with the model \mathcal{M}_{k^*} , i.e. $p(\mathbf{x}_{k^*}|\mathbf{z}, \mathcal{M}_{k^*})$

Unfortunately both $p(\boldsymbol{z}|\mathcal{M}_k)$ and $p(\mathbf{x}_{k^*}|\boldsymbol{z},\mathcal{M}_{k^*})$ are intractable ! \Rightarrow Propose to use advanced Monte-Carlo methods (SMC sampler) in order to have an accurate approximation of both quantities.

Page 23/27

```
(ロ) (日) (日) (日) (日) (日) (日) (日)
```

Proposed Bayesian Solution

Derive an Sequential Monte Carlo sampler algorithm :

- Sequential algorithm which are able to deal with complex high-dimensional and/or multimodal posterior distribution
 - by using MCMC methodology
 - by introducing a sequence of progressive annealed distribution

(start with a distribution easy to sample from to the posterior of interest)

- produces a set of weighted samples that approximates the posterior distribution p(x_k|z, M_k) and gives an unbiased estimate of p(z|M_k)
 - more details about this algorithm in my tomorrow's talk

Single Source Scenario

◆ロト ◆団 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Other parameters of the scenario :

- a signal decay exponent n = 2,
- a reference distance as and $d_0 = 1$,
- \blacksquare the region of interest is $100\times 100m$ field
- the sensors are uniformly deployed in a grid .

Single Source Scenario

		SMC	Importance
		Recycling	Sampler
			[Masazade et al., 2010]
	N = 50	0.0647 (0.0160)	0.1563 (0.1026)
25	N = 100	0.0527 (0.0112)	0.1181 (0.0870)
lter.	N = 200	0.0456 (0.0082)	0.0943 (0.0715)
	N = 50	0.0543 (0.0131)	0.1159 (0.0796)
50	N = 100	0.0449 (0.0084)	0.0908 (0.0541)
lter.	N = 200	0.0399 (0.0064)	0.0737 (0.0601)
	N = 50	0.0456 (0.0077)	0.0900 (0.0589)
100	N = 100	0.0406 (0.0073)	0.0735 (0.0413)
Iter.	N = 200	0.0367 (0.0053)	0.0611 (0.0427)

Accuracy to approximate the posterior distribution $p(x_1|z)$ in terms of the Kolmogorov-Smirnov distance (mean and standard deviation in parentheses).

 \Rightarrow Significant improvement compared to existing IS algo. !

Page 25/27

Multiple Source Scenario

◆ロト ◆団 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Parameters of the scenario :

- 4 sources in the ROI
- a signal decay exponent n = 2,
- a reference distance as and $d_0 = 1$,
- the region of interest is $100 \times 100m$ field
- the sensors are uniformly deployed in a grid .

Multiple Source Scenario

Accuracy on the model choice :

 $\sigma^2 = 1$

Number of times that each model has been selected with the approximated model posterior from the SMC sampler with different number of quantization levels

⇒ Proposed algorithm clearly able to detect that there are 4 sources in the ROI!

Page 26/27

```
▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで
```

 $\sigma^2 = 0.05$

Multiple Source Scenario

Accuracy on the source localization : $\sigma^2 = 1$ $\sigma^2 = 0.05$ 10 10 Squared Error (Position) Mean Squared Error (Position) DeMix Recycling DeMix Recycling 10 10 10⁰ Mean 3 10 10 15 20 30 5 10 15 20 25 30 Number of quantization levels L Number of quantization levels L

MSE for the source locations with \neq number of quantization levels L We derive the posterior Cramér-Rao bound for this problem

- $\Rightarrow\,$ As expected, the accuracy on the localization improves as the number of quantization levels $\nearrow\,$
- ⇒ Empirically demonstrate the good localization performance of the proposed algorithm

Page 26/27

Conclusion and Future Works

Conclusion

- Propose efficient Bayesian algorithm to
 - estimate the number of source in the region of interet
 - estimate their locations as well as their transmitted powers
- Derive the posterior Cramér-Rao bound associated to the sources' parameters estimation

Future works

- Optimal sequential sensor selection scheme to avoid the transmission of information from all the sensors
- Utilize the derived posterior Cramér-Rao bound to optimize
 - placement of the sensors
 - quantization thresholds of the sensors