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Context

General Aim : make statements, inferences, about unknown features of
the physical system based on observed data.

Bayesian Inference :

SYSTEM θ̂ = f (p(θ|y))
θ y

One important task : finding the estimation of unknown parameters θ

and their distribution.

⇒ Contain all the statistical information about phenomenon.
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Context

Bayesian framework :

1. Prior, p(θ) : expresses what is known about θ prior to observing
data.

2. Likelihood , p(y|θ) : probability of observing a data if we have a
certain set of parameter values.

3. Posterior, p(θ|y) : expresses what is known about θ after observing
data.

p(θ|y) =
p(θ,y)

p(y)
=

p(θ)p(y|θ)

p(y)
∝ p(θ)p(y|θ)

p(y) =
∫
E
p(y|θ)p(θ)dθ : normalizing constant/marginal

likelihood/Bayesian Evidence.

4. Inference : derive appropriate inference statements from the
posterior distribution. e.g,

Ep(θ|y)[ϕ(θ)] =

∫
ϕ(θ)p(θ|y)dθ

of some function ϕ(θ).

Generally impossible to obtain a closed-form expression of the pos-

terior distribution p(θ|y) !
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Solution

Numerical integration techniques :, e.g, Gaussian Quadrature and Simp-
son rule, [Ruanaidh et al., 1996] : require a grid of points ⇒ are fine in
low dimensions, BUT

too costly for high dimensional integrals !

Monte Carlo methods : Generate a large number of samples distributed
according to p(θ|y) to obtain consistent simulation-based estimators.

Remarkably flexible and extremely powerful to adapt to many

statistical models.
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Bayesian Formulation

Formulation : Target distribution π(θ) = p(θ|y), only known up to a
normalizing constant

π(θ) =
γ(θ)

Z
∝ γ(θ)

γ(θ) = p(θ)p(y|θ)

and

Z =

∫

E

γ(θ)dθ =

∫

E

p(θ)p(y|θ)dθ = p(y) Normalizing constant
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Importance sampling(IS)

Basic idea : Sample from a proposal distribution η(θ) instead of π(θ) and
use weights as correction.

1. Sample θi ∼ η(θ)

2. Correction Step : W i = γ(θi)
η(θ)

θ
θi

W̃ i

π(θ)

Pros : Good convergence properties, easy to implement.

Cons : Difficult and challenging to choose a good proposal distribution.
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Markov chain Monte Carlo (MCMC)

Basic idea : Construct a Markov Chain whose stationary limiting distribution is
p(θ|y).

1. Sample θ
∗ ∼ Kt(θ

i−1, ·)

2. Accept [θi = θ
∗] or Reject [θi = θ

i−1] with some probability.

Pros : A lot of available sampling strategies [e.g, local moves all elements or
sub-blocks]

Cons :

� Difficult to assess when the Markov chain has reached its stationary
regime of interest [Burn-in period].

� Can easily become trapped in local modes.

� Extra complexity cost for estimating normalizing constant.
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Population MCMC

Population-based MCMC was originally developed by Geyer [Geyer, 1991].
→֒ Further advances came in [Liang and Wong, 2000, Liang and Wong, 2001]

Main Idea : Runs T MCMC chains in parallel, each one targeting 6= versions (e.g.
annealed) of the posterior distribution and include some interactions between the
Markov chains.
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Population MCMC

Population-based MCMC was originally developed by Geyer [Geyer, 1991].
→֒ Further advances came in [Liang and Wong, 2000, Liang and Wong, 2001]

Main Idea : Runs T MCMC chains in parallel, each one targeting 6= versions (e.g.
annealed) of the posterior distribution and include some interactions between the
Markov chains.
The new target distribution defined in the population-based MCMC is defined
as :

π
∗(θ1:T ) =

T∏

k=1

πk(θk) (1)

where it is assumed that the true target of interest (the posterior distribution in
Bayesian inference) π = πk for at least one k = 1, . . . , T .
Typical choice (for multimodal posterior distribution) :

πk(θ) ∝ p(y|θ)φkp(θ) (2)

with ∀k, φk ∈ (0, 1] and for at least one k = 1, . . . , T , φk = 1.
Then 2 6= MCMC kernels are involved :

� Update each chain

� Interact 2 chains by crossover of exchange move.
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Population MCMC

Population-based MCMC was originally developed by Geyer [Geyer, 1991].
→֒ Further advances came in [Liang and Wong, 2000, Liang and Wong, 2001]

Main Idea : Runs T MCMC chains in parallel, each one targeting 6= versions (e.g.
annealed) of the posterior distribution and include some interactions between the
Markov chains.
Pros :

� A lot of available sampling strategies [e.g, local moves all elements or
sub-blocks]

� Robust to multimodality of the posterior distribution

Cons :

� Difficult to assess when the Markov chain has reached its stationary
regime of interest [Burn-in period].

� Extra complexity cost for estimating normalizing constant.
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Goal of this work

1. Study more robust and efficient Monte Carlo technique : SMC
sampler.

2. Algorithm improvement by proposing new strategies to reduce the
variance of the estimator

3. Applications to some challenging signal processing problems.

Joint work with Gareth Peters, T.L. Thu Nguyen

Page 11/35



SMC Sampler : Main idea

Idea 1 : Design an artificial

sequence of annealed
distributions {πt}1≤t≤T from
a distribution easy to sample
from to the posterior of
interest.

Idea 2 : Propagate a cloud
of weighted random samples
to approximate each
distribution by combining IS
and MCMC advantages.

π2(θ)

π1(θ)

πT −1(θ)

πT (θ) = p(θ|y)
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Methodology

At time 1 : Select π1 which is easy to approximate by importance distri-
bution η1.

...

At time t :

1. Propagate
{
θ
(m)
t−1

}N

m=1
by mutation (MCMC) kernel Kt(θt−1, θt)

to obtain
{
θ
(m)
t

}N

m=1
.

2. Correct using importance weights :

Wt(θ
(m)
t ) =

γt(θ
(m)
t )

ηt(θ
(m)
t )

However

ηt(θt) =

∫

E

ηt−1(θt−1)Kt(θt−1, θt)dθt−1

is typically not available.
⇒ Cannot directly use Importance Sampling.
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Methodology

Solution : Perform importance sampling on extended space by introducing
a sequence of extended probability distributions {π̃t}

T

t=1 on Et admitting

{πt}
T
t=1 as marginals

π̃t(θ1:t) =
γ̃t(θ1:t)

Zt

γ̃t(θ1:t) = γt(θt)

t−1∏

k=1

Lk(θk+1, θk)

in which Lt(θt+1, θt) termed backward Markov kernels.

⇒ Allow the use of IS without computing ηt(θt).

W
(m)
t ∝

π̃t(θ
(m)
1:t )

ηt(θ
(m)
1:t )

∝ wt(θ
(m)
t−1 , θ

(m)
t )W

(m)
t−1

where incremental weights

wt(θ
(m)
t−1 , θ

(m)
t ) =

γt(θ
(m)
t )Lt−1(θ

(m)
t , θ

(m)
t−1)

γt−1(θ
(m)
t−1)Kt(θ

(m)
t−1 , θ

(m)
t )
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Algorithm summary

1. Mutation, particles
moved from θt−1 to θt

via a MCMC mutation
kernel ;

2. Correction, particles are
reweighted with respect
to πt ;

3. Selection, resampling
weighted particles
reduce the variability of
the importance weights.

Selection

Correction

Time

Mutation

Correction

t

{θ
( i)
t , w̃

( i)
t }10i=1

{θ
( i)
t−1 , w̃

( i)
t−1}

10
i=1

t -1
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SMC Sampler

1: Initialize particle system

2: Sample
{
θ
(m)
1

}N

m=1
∼ η1(·) and compute W̃

(m)
1 =

(
γ1(θ

(m)
1 )

η1(θ
(m)
1 )

)[∑N
j=1

γ1(θ
(j)
1 )

η1(θ
(j)
1 )

]
−1

and do resampling if ESS < ESS

3: for t = 2, . . . , T do

4: Mutation : for each m = 1, . . . , N : Sample θ
m
t ∼ Kt(θ

(m)
t−1 ; ·) where

Kt(·; ·) is a πt(·) invariant Markov kernel.
5: Computation of the weights : for each m = 1, . . . , N

W
(m)
t = W̃

(m)
t−1

γt(θ
(m)
t )Lt−1(θ

(m)
t ,θ

(m)
t−1)

γt−1(θ
(m)
t−1)Kt(θ

(m)
t−1 ,θ

(m)
t )

Normalization of the weights : W̃
(m)
t = W

(m)
t

[∑N
j=1 W

(j)
t

]
−1

6: Selection : if ESS < ESS then Resample
7: end for
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Advantages

1. No Burn-in period.

2. Framework that allowed to use interacting parallel MCMC.

3. Flexible choice of forward kernel Kt.

4. Well suited for the computation of Bayesian evidence : unbiased
estimate of normalizing constant.

⇒ Promising alternative to standard MCMC methods.

Page 17/35



Challenging problems

1. How to choose the

sequence of target

distributions?

2. How to optimize and

reuse all the particles

generated through all

SMC iterations ? π2(θ)

π1(θ)

πT −1(θ)

πT (θ) = p(θ|y)
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Challenging problems
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Typical choice of the target sequence

Utilize likelihood tempered target sequence ([Neal, 2001])

πt(θ) ∝ p(θ)p(y|θ)φt

{φt} : non-decreasing temperature schedule satisfies φ0 = 0 and φT = 1.

⇒ sample initially from the prior distribution π0 = p(θ) and gradually
increase the effect of likelihood in order to obtain the approximation of the
posterior distribution p(θ|y).
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Related Works

Idea : Automatically approximate discrepancy, ̺t = φt − φt−1, between
πt and πt−1.

1. [Jasra et al., 2011] : Based on controlling the rate of ESSt :

ESSt : empirical measure of the discrepancy ηt and πt.

2. [Zhou et al., 2013] : Based on controlling the rate of CESSt :

CESSt - variant of ESSt : empirical measure of the discrepancy
between πt and πt−1.

Pros : Easy to implement.

Cons : On-line scheme : one step ahead (not global) optimization

⇒ Impossible to control the complexity of the algorithm.

Our Idea : Propose an adaptive scheme based on global optimization of
{φt} before running SMC samplers.
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Asymptotic Convergence results

Goal : Derive from [Del Moral et al., 2006] some specified expression of
asymptotic variance to easily understand the impact of sequence of target
distributions on the accuracy of the SMC sampler estimate.

Assumptions for these derivations :

� Forward kernel which mixes perfectly, i.e. :

Kt(θt−1, θt) = πt(θt)

� Backward Kernel typically used when MCMC kernel is used as
forward kernel :

Lt−1(θt, θt−1) =
πt(θt−1)Kt(θt−1, θt)

πt(θt)

Conclusion :

� The asymptotic variance is reduced by conducting resampling before
sampling ⇒ Preferable to do resampling before the sampling stage.

� The asymptotic variance is a function of the dissimilarity between
two successive distribution in the sequence.
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Impact of the cooling schedule

Model : Linear and Gaussian Model

p(θ) = N (θ|µ,Σ)

p(y|θ) = N (y|Hθ,Σy)

⇒ p(θ|y) = N (θ|µp,Σp)

Parametric cooling temperature :

φt =
exp(γt/T )− 1

exp(γ)− 1

γ = 10−10 →Var(Ẑ) = 2.97

γ = 5 →Var(Ẑ) = 0.3539

γ = 100 →Var(Ẑ) = 23.3
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⇒ Choice of the cooling schedule is crucial !
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Proposed approach

Proposed criterion : Take the sequence of distributions which minimizes
the variance of normalizing constant.

Goal : Find optimal
{
φ̂t

}
1≤t≤T

satisfies

{
φ̂1, . . . , φ̂T

}
= argmin

φ1,...,φT

T−1∑

t=1

∫
π2
t+1(θt)

πt(θt)
dθt − (T − 1)

︸ ︷︷ ︸
NVar{p̂(y)}

(1)

which is related to the Rényi divergence

Dα(f1||f2) =
1

α− 1
log

∫
fα
1 (x)f

1−α
2 (x)dx ≥ 0 (2)

Generally impossible to solve analytically !
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Proposed approach

Proposed Solution : Avoid integral approximation by approximate the T
artificial target distributions, πt for t = 1, · · · , T by a multivariate normal
distribution, i.e. :

πt(θ) ∝ p(y|θ)φtp(θ)

≈ N (θ|µt,Σt)

⇒ enable to obtain the analytic expression for the asymptotic variance of
normalizing constant.

Proposition : to obtain efficient algorithm by using :

1. Laplace’s method or moment matching method.

2. Tempered multivariate normal distribution is proportional to
multivariate normal distribution.

3. Product of 2 multivariate normal distributions is a multivariate
normal distribution.
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Proposed approach

Proposed Solution : Avoid integral approximation by approximate the T
artificial target distributions, πt for t = 1, · · · , T by a multivariate normal
distribution, i.e. :

πt(θ) ∝ p(y|θ)φtp(θ)

≈ N (θ|µt,Σt)

⇒ enable to obtain the analytic expression for the asymptotic variance of
normalizing constant.

Pros :

� Global optimization
→֒ Obtain the complete view of cooling schedule performance

before starting the SMC sampler.

� Empirically reduce the variance of Bayes evidence
→֒ Apply to model selection problem.

Cons : Based on Gaussian approximation of sequence of target distribu-
tions.
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Illustration

Normal and linear model

20 30 40 50 60 70 80 90 100 110
−5

−4

−3

−2

−1

0

1

2

3

4

Average Number of i terations T

V
a
ri

a
n

c
e

[l
o
g

sc
a
le

]

 

 
Linear Cool ing
CESS-based approach
Proposed approach

� Significant gain vs
Linear cooling.

� Similar performance
compared to
CESS-based approach

BUT

can totally control the
complexity of the
algorithm.
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Challenging problems

1. How to choose the sequence

of target distributions ?

2. How to optimize and reuse

all the particles generated

through all SMC iterations ? π2(θ)

π1(θ)

πT −1(θ)

πT (θ) = p(θ|y)
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Recycling Idea

Generally, only the weighted random samples from the last iteration are
used :

Eπ[h(θ)] ≈
N∑

j=1

W̃
(j)
T h(θ

(j)
T )

BUT, we have generated T collections {W̃
(j)
t ; θ

(j)
t }Nj=1that approximates :

πt(θ) ≈
N∑

j=1

W̃
(j)
t δ

θ
(j)
t

(dθ)

How can we combine all these collections
to improve the estimator’s property ?

→֒ Eπ[h(θ)] ≈
T∑

t=1

N∑

j=1

W̃
(j)
COMBI,th(θ

(j)
t )
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Proposed Recycling Schemes

{θ̃
(j)
1 }Nj=1 ∼ π1 {θ̃

(j)
2 }Nj=1 ∼ π2 [Asympt.] {θ̃

(j)
T }Nj=1 ∼ π

Idea : Correction of the random samples by an importance weighting step.

Prop 1 : Adapt to SMC sampler an idea proposed by [Gramacy et al., 2010] for
MCMC.

1. Correction step : W
(j)
ESS,t =

γ(θ̃
(j)
t

)

γt(θ̃
(j)
t )

.

2. Compute (local) estimator : ĥt =
∑N

j=1 W̃
(j)
ESS,th(θ̃

(j)
t ).

3. Combine these estimator : ĥ =
∑T

t=1 λtĥt such that λt optimize the ESS
of the global population.
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Proposed Recycling Schemes

{θ̃
(j)
1 }Nj=1 ∼ π1 {θ̃

(j)
2 }Nj=1 ∼ π2 [Asympt.] {θ̃

(j)
T }Nj=1 ∼ π

Idea : Correction of the random samples by an importance weighting step.

Prop 2 : Use the deterministic mixture idea developed in [Veach and Guibas, 1995].
→֒ Consider the entire available population coming from a “mixture”.

1. Correction : W
(j)
DeMix,t =

γ(θ̃
(j)
t )

∑
T
t=1 ctπt(θ̃

(j)
t )

with ct =
1
T

and πt(·) =
γt(·)
Zt

Prop Zt is replaced by the unbiased estimate given by the SMC sampler.

2. Combine ĥ =
∑T

t=1

∑N
j=1 W̃

(j)
DeMix,th(θ̃

(j)
t )
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Numerical Simulations

Multimodal posterior distribution

p(θ) = N (θ|µ,Σ)

p(y|θ) =
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Numerical Simulations
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T = 100.

Proposed Recycling schemes
- Gain :

96% reduction
compared to classical
estimator,

94% reduction
compared to naïve scheme.

⇓

Significant improvement
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Numerical Simulations

No Recycling Naive ESS-based DeMix
Recycling Recycling Recycling

N = 50 0.1607 (0.0615) 0.1571 (0.0612) 0.0861 (0.0417) 0.0839 (0.0390)
T = N = 100 0.1048 (0.0331) 0.1026 (0.0325) 0.0596 (0.0216) 0.0578 (0.0203)

25 Iter. N = 200 0.0825 (0.0299) 0.0809 (0.0296) 0.0494 (0.0201) 0.0476 (0.0188)
N = 50 0.1641 (0.0651) 0.1499 (0.0649) 0.0678 (0.0289) 0.0655 (0.0274)

T = N = 100 0.1126 (0.0392) 0.1020 (0.0385) 0.0517 (0.0215) 0.0500 (0.0204)
50 Iter. N = 200 0.0878 (0.0378) 0.0803 (0.0369) 0.0404 (0.0147) 0.0396 (0.0139)

N = 50 0.1795 (0.0883) 0.1528 (0.0845) 0.0623 (0.0420) 0.0604 (0.0393)
T = N = 100 0.1261 (0.0580) 0.1092 (0.0570) 0.0475 (0.0229) 0.0459 (0.0214)

100 Iter. N = 200 0.0901 (0.0329) 0.0761 (0.0326) 0.0352 (0.0141) 0.0342 (0.0135)

Table: Comparison of recycling schemes for the accuracy to approximate the
posterior distribution p(θ1|y) in terms of the Kolmogorov-Smirnov distance
(mean and standard deviation in parentheses).
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Conclusion and Future works

Conclusion

� Derive simple form for the asymptotic variances for SMC samplers
estimate under some assumptions.

� Propose novel strategy to automatically and adaptively choose the
sequence of target distribution.

� Propose two different approaches to recycle all past simulated
particles for the approximation of posterior distribution.

� Obtain significant improvement by using both proposed strategies.

Future Work

� Theoretical Analysis of the proposed schemes
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