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Beyond Linear Dependence:

In the statistics and probability literature there are many notions of
dependence specified:

• Parametric model based Copula dependence.

• Multivariate Upper Negative (positive) Dependence, Lower Negative
(positive) Dependence and Negative (positive) Dependence;

• Multivariate Negative and Positive Quadrant Dependence;
- Key concepts for determining if a parameter of a multivariate
distribution (copula) is directly a dependence parameter

• Multivariate Association, Comonotonicity and Stochastic Ordering;
- Associated to key concepts such as increasing positive dependence
used in analysis of mixing of Markov chains, time series etc.

• Regression Dependence: Positive and Negative;
• Extreme Dependence, Tail Dependence and Intermediate Tail

Dependence - Crucial to the study of joint extreme dependence
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Basics of Copulas

MODEL BASED CHARACTERIZATIONS OF DEPENDENCE:

[Fisher, 1997] observed that

“Copulas [are] of interest to statisticians for two main reasons:

1 as a way of studying scale-free measures of dependence.

2 as a starting point for constructing families of multivariate distributions,
sometimes with a view to simulation.”

• Copula theory can be traced back to Hoeffding’s work on standardised
distributions on the square [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ].

• Following this work, the term copula was first coined as a mathematical
concept in Abel Sklar’s theorem [Sklar, 1959]
⇒ showed that one-dimensional distributions can be joined by a copula
function to form multivariate distributions.
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Basics of Copulas

Definition: Copula Distribution
A d-dimensional copula is a multivariate distribution C with uniform [0, 1] margins such
that C : [0, 1]d → [0, 1] and C satisfies:

• C (u1, . . . , ud ) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d}
• C (u1, . . . , ud ) = ui if ui = 1 for all j = 1, . . . , d and j 6= i .

• C is quasi-monotone on its support [0, 1]d i.e. for every hyperrectangle
B =

∏d
i=1[xi , yi ] ⊆ [0, 1]d the C-volume of B is non-negative.

• In addition for every a and b in [0, 1]d , such that for each ai < bi for all
i ∈ {1, 2, . . . , n} the condition on the volume for copula C is satisfied:
VC ([a,b]) ≥ 0.
• NOTE: The volume of an d-box is given by

VC ([a,b]) =
∑

sgn(v)C(v)

= 4b1
a1
4b2

a2
· · ·4bd

ad
C(v)

where the sum is taken over all vertices v of the d-box [a,b] and sgn(v) = 1
if vk = ak for an even number of k’s of sgn(v) = −1 if vk = ak for an odd
number of k’s. In addition one defines the notation

4bk
ak

C(u) = C (u1, u2, . . . , uk−1, bk , uk+1, . . . , ud )−C (u1, u2, . . . , uk−1, ak , uk+1, . . . , ud ) .
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Basics of Copulas

Copula: consider random vector X ∈ Rd with continuous distribution F . Then
to every X one can associate a d-copula C : [0, 1]d 7→ [0, 1], defined by

F (x1, x2, . . . , xd ) = C (F1 (x1) , . . . ,Fd (xd ))

where Fi is the marginal distribution of Xi .

Survival Copula: the survival copula is defined as follows

Pr [X1 > x1,X2 > x2] = F (x1, x2)

= 1− FX1 (x1)− FX2 (x2) + F (X1,X2)

= F X1 (x1) + F X2 (x2)− 1 + C (FX1 (x1),FX2 (x2))

= F X1 (x1) + F X2 (x2)− 1 + C
(

1− F X1 (x1), 1− F X2 (x2)
)

Hence, one can define for instance in d = 2 the mapping C̃ : [0, 1]2 7→ [0, 1]
by

C̃(1− u, 1− u) = 1− 2u − C(u, u)

to be the survival copula of C i.e. F (x1, x2) = C̃(F X1 (x1),F X2 (x2))
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Basics of Copulas

Definition: Frechet-Hoffding Copula Bounds
The Frechet-Hoffding Upper Bound copula is given by

Md (u1, . . . , ud ) = min {u1, . . . , ud}

The Frechet-Hoffding Lower Bound copula is given by

W d (u1, . . . , ud ) = max

{
1− d +

d∑
i=1

ui , 0

}

One has the following bounds on all copulas

W d (u1, . . . , ud ) ≤ C (F1 (x1) , . . . ,Fd (xd )) ≤ Md (u1, . . . , ud )

• Probability Mass Md is distributed uniformly along the line segment
u1 = . . . = ud running from (0, . . . , 0) to (1, . . . , 1) in [0, 1]d .

• For all d-copula distributions C ≤ Md and Md can be thought of as a
state of ’maximal concordance’.
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Basics of Copulas

Note: for d ≥ 3 the function W d is not strictly a copula, this can be seen by
calculating W d ([1/2, 1]× [1/2, 1]× · · · × [1/2, 1]) which may not produce
VC ([a,b]) ≥ 0.

Recall the definition of a Volume of a d-box:

VC ([a,b]) =
∑

sgn(v)C(v) = 4b1
a1
4b2

a2
· · ·4bd

ad
C(v)

where the sum is taken over all vertices v of the n-box [a,b] and sgn(v) = 1
if vk = ak for an even number of k ’s of sgn(v) = −1 if vk = ak for an odd
number of k ’s and we used
4bk

ak
C(u) = C (u1, u2, . . . , uk−1, bk , uk+1, . . . , ud )− C (u1, u2, . . . , uk−1, ak , uk+1, . . . , ud ) .

Applying this to the copula W d for the d-box [1/2, 1]d produces

W d
(

[1/2, 1]d
)

= max {1 + 1 + . . .+ 1− d + 1, 0}

− d max {1/2 + 1 + . . .+ 1− d + 1, 0}
+ Cn

2 max {1/2 + 1/2 + 1 + . . .+ 1− d + 1, 0}
· · ·
+ max {1/2 + . . .+ 1/2− d + 1, 0}
= 1− d/2 + 0 + . . .+ 0.

Hence, for d ≥ 3 the function W d is not strictly a copula.
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number of k ’s and we used
4bk

ak
C(u) = C (u1, u2, . . . , uk−1, bk , uk+1, . . . , ud )− C (u1, u2, . . . , uk−1, ak , uk+1, . . . , ud ) .

Applying this to the copula W d for the d-box [1/2, 1]d produces

W d
(

[1/2, 1]d
)

= max {1 + 1 + . . .+ 1− d + 1, 0}

− d max {1/2 + 1 + . . .+ 1− d + 1, 0}
+ Cn

2 max {1/2 + 1/2 + 1 + . . .+ 1− d + 1, 0}
· · ·
+ max {1/2 + . . .+ 1/2− d + 1, 0}
= 1− d/2 + 0 + . . .+ 0.

Hence, for d ≥ 3 the function W d is not strictly a copula.
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Basics of Copulas

So how is W d the best possible lower bound on copulas?

W d is Best Possible Lower Bound

[Nelson, 1999] showed that for any d ≥ 3 and any u ∈ [0, 1]d , there is a
d-copula C, which depends on u, such that

C(u) = W d (u). (1)

One last special copula also valuable is the Independence Copula.

Definition: Independence Copula
Independence copula is given by

Πd (u1, . . . , ud ) = u1u2 . . . ud
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Basics of Copulas

Copulas and Transformations

Strictly Increasing Transformations
If X1,X2, . . . ,Xd are continuous r.v.’s with copula CX1,X2,...,Xd . Then if
T1(X1),T2(X2), . . . ,Td (Xd ) are strictly increasing on
Ran(X1),Ran(X2), . . . ,Ran(Xd ), then CT1(X1),T2(X2),...,Td (Xd ) = CX1,X2,...,Xd .

Copula CX1,X2,...,Xd is invariant under strictly increasing transforms.
Proof:
• Consider marginal distributions F1, . . . ,Fd for continuous r.v.’s X1, . . . ,Xd

and joint copula CX1,X2,...,Xd

• Let G1, . . . ,Gd be the distributions of T1(X1), . . . ,Td (Xd ) respectively
with joint copula CT1(X1),T2(X2),...,Td (Xd ).

• Ti (·) is strictly increasing for each i , hence

Gi (x) = Pr (Ti (Xi ) ≤ x) = Pr
(

Xi ≤ T−1
i (x)

)
= Fi

(
T−1

i (x)
)

(2)

for any x ∈ Ran(Xi ), hence one can show PTO
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Basics of Copulas

Copulas and Transformations
Proof Cont.:

CT1(X1),T2(X2),...,Td (Xd ) (G1(x1), . . . ,Gd (xd ))

= Pr (T1(X1) ≤ x1, . . . ,Td (Xd ) ≤ xd )

= Pr
(

X1 ≤ T−1
1 (x1), . . . ,Xd ≤ T−1

d (xd )
)

= CX1,X2,...,Xd

(
F1(T−1

1 (x1)), . . . ,Fd (T−1
d (xd ))

)
= CX1,X2,...,Xd (G1(x1), . . . ,Gd (xd ))

(3)

Since X1, . . . ,Xd are continous, RanG1 = . . .RanGd = [0, 1]. Hence it follows
that CT1(X1),T2(X2),...,Td (Xd ) = CX1,X2,...,Xd on [0, 1]d .
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Basics of Copulas

Copulas and Transformations

Strictly Monotone Transformations
If X1 and X2 are continuous r.v.’s with copula CX1,X2 . Then if T1(X1) and
T2(X2) are strictly monotone on Ran(X1) and Ran(X2), then:

• If T1(·) is strictly increasing and T2(·) strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u − CX1,X2 (u, 1− v).

• If T1(·) is strictly decreasing and T2(·) strictly increasing, then

CT1(X1),T2(X2)(u, v) = v − CX1,X2 (1− u, v).

• If T1(·) and T2(·) are strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u + v − 1 + CX1,X2 (1− u, 1− v).

15 / 95



Basics of Copulas

Copulas and Transformations

Strictly Monotone Transformations
If X1 and X2 are continuous r.v.’s with copula CX1,X2 . Then if T1(X1) and
T2(X2) are strictly monotone on Ran(X1) and Ran(X2), then:
• If T1(·) is strictly increasing and T2(·) strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u − CX1,X2 (u, 1− v).

• If T1(·) is strictly decreasing and T2(·) strictly increasing, then

CT1(X1),T2(X2)(u, v) = v − CX1,X2 (1− u, v).

• If T1(·) and T2(·) are strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u + v − 1 + CX1,X2 (1− u, 1− v).

15 / 95



Basics of Copulas

Copulas and Transformations

Strictly Monotone Transformations
If X1 and X2 are continuous r.v.’s with copula CX1,X2 . Then if T1(X1) and
T2(X2) are strictly monotone on Ran(X1) and Ran(X2), then:
• If T1(·) is strictly increasing and T2(·) strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u − CX1,X2 (u, 1− v).

• If T1(·) is strictly decreasing and T2(·) strictly increasing, then

CT1(X1),T2(X2)(u, v) = v − CX1,X2 (1− u, v).

• If T1(·) and T2(·) are strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u + v − 1 + CX1,X2 (1− u, 1− v).

15 / 95



Basics of Copulas

Copulas and Transformations

Strictly Monotone Transformations
If X1 and X2 are continuous r.v.’s with copula CX1,X2 . Then if T1(X1) and
T2(X2) are strictly monotone on Ran(X1) and Ran(X2), then:
• If T1(·) is strictly increasing and T2(·) strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u − CX1,X2 (u, 1− v).

• If T1(·) is strictly decreasing and T2(·) strictly increasing, then

CT1(X1),T2(X2)(u, v) = v − CX1,X2 (1− u, v).

• If T1(·) and T2(·) are strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u + v − 1 + CX1,X2 (1− u, 1− v).

15 / 95



Basics of Copulas

MOST GENERAL APPROACH TO COPULA SIMULATION (SAMPLING)

• Consider general d-copula C, let the k -dim marginals of C be given by

Ck (u1, . . . , uk ) = C(u1, . . . , uk , 1, . . . , 1), k = 2, . . . , d − 1, (4)

with C1(u1) = u1 and Cd (u1, . . . , ud ) = C(u1, . . . , ud )

• Let U1, . . . ,Ud have joint distribution C. Then the conditional distribution
of Uk given U1, . . . ,Uk−1 is given by

Ck (uk |u1, . . . , uk−1) = Pr (Uk ≤ uk |U1 = u1, . . . ,Uk−1 = uk−1)

=
∂k−1Ck (u1, . . . , uk )

∂u1 . . . ∂uk−1

/
∂k−1Ck−1(u1, . . . , uk−1)

∂u1 . . . ∂uk−1

Simulation
Step 1 Simulate a random variate u1 from U(0, 1)

Step 2 Simulate a random variate u2 from C2(·|u1)

...

Step d Simulate a random variate ud from Cd (·|u1, . . . , ud−1)
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Beyond Linear Dependence

Dependence Concepts Discussed:
• Stochastic Ordering and Properties Implied by a Stochastic Order

• Multivariate Negative and Positive Dependence
• Upper Negative and Lower Negative Dependence

• Multivariate Negative and Positive Association
• Quadrant Dependence

• Pairwise Negative and Posative Quandrant Dependence

• Lower and Upper Orthant Dependence
• Tail Increasing and Tail Decreasing, Tail Increase/Decrease in Sequence
• Stochastic Increase and Stochastic Decrease
• Regression Dependence: Bivariate and Multivariate
• Comonotonicity
• Multivariate Total Positivity of Order 2
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Beyond Linear Dependence: Stochastic Ordering

Start with a useful concept of stochastic ordering

We will need a notion of stochastic order i.e. quantification of ’one random
variable being ”bigger” than another’.

Definition: Stochastic Ordering
Stochastic ordering (partial ordering) allows one to compare two random
variables X1 and X2 and is characterized by X1 � X2 (or X1 ≤st X2) if and only
if

F X1 (x) ≤ F X2 (x), ∀x .

The following are all equivalent definitions:
• X1 ≤st X2 ⇔ FX1 (x) ≥ FX2 (x), ∀x .
• X1 ≤st X2 ⇔ Pr [X1 ≥ x ] ≤ Pr [X2 ≥ x ] , ∀x .
• X1 ≤st X2 ⇔ EX1 [f (x)] ≥ EX2 [f (x)] , for all non-decreasing functions f .
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Beyond Linear Dependence: Stochastic Ordering

• A stochastic order can be considered an antisymmetric preorder since it
is a binary relation that is reflexive and transitive.

• It is not a complete ordering since there exist random variables
(distributions) which cannot be ordered through this ordering

Properties of Stochastic Ordering
• If X1 ≤st X2 and a function g(·) is non-decreasing then g (X1) ≤st g (X2)

• Consider random vectors (X1, . . . ,Xd ) and (Y1, . . . ,Yd ) such that for all
i ∈ {1, 2, . . . , d} one has Xi ≤st Yi and for any function g : Rd 7→ R
which is non-decreasing one has g (X1, . . . ,Xd ) ≤st g (Y1, . . . ,Yd ).

• Reflexive: if Xi ≤st Xj then FXi ≤ FXj

• Transitive: if Xi ≤st Xj and Xj ≤st Xk then FXi ≤ FXj and FXj ≤ FXk then
FXi ≤ FXk .

• Antisymmetric: if Xi ≤st Xj then FXi ≤ FXj and if Xj ≤st Xi such that
FXj ≤ FXi , this would imply that FXi = FXj which is another statement of
stochastic equivalence ie. that Xi ∼ FXi and Xj ∼ FXj then Xi =st Xj when
FXi ∼ FXj .

One can use the idea of partial stochastic orderings to define: Right Tail
Decreasing, Left Tail Increasing, Left Tail Decreasing, Stochastically
Decreasing and Regression Dependence as will be shown...
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Beyond Linear Dependence: Negative Dependence

Definition: Multivariate Negative Dependence
Consider random variables {Xi}i≥1. The sequence is lower or upper
negatively dependent as follows:

• Lower Negative Dependence: A sequence of loss random variables
are LND if for each d ≥ 1 and all X1,X2, . . . ,Xd one has

Pr [X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd ] ≤
d∏

i=1

Pr [Xi < xi ]

• Upper Negative Dependence: A sequence of loss random variables
are UND if for each d ≥ 1 and all X1,X2, . . . ,Xd one has

Pr [X1 > x1,X2 > x2, . . . ,Xd > xd ] ≤
d∏

i=1

Pr [Xi > xi ]

• Negative Dependence: A sequence of loss random variables are ND if
for each d ≥ 1 and all X1,X2, . . . ,Xd they satisfy that they are both LND
and UND.

[Block et al. 1982], [Ghosh et al. 1981]
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Beyond Linear Dependence: Multivariate Association

LND and UND versus Negative Association
The notion of lower and upper negative dependence is a weaker notion of
dependence than the more familiar idea of negative association.

Definition: Multivariate Negative Association
Random variables {X1, . . . ,Xd}are negatively associated if for every pair of
disjoint subsets A1,A2 of {1, . . . , n} one has

Cov [f1 (Xi ; i ∈ A1) , f2 (Xj ; j ∈ A2)] ≤ 0

whenever f1 and f2 are increasing functions. [Joag et al 1983]

• Examples of multivariate distributions that satisfy NA: multinomial,
multivariate hypergeometric and Dirichlet.

Definition: Multivariate Positive Association
A d-vector {X1, . . . ,Xd} is PA if the inequality

E [f1 (X1, . . . ,Xd ) , f2 (X1, . . . ,Xd )] ≥ E [f1 (X1, . . . ,Xd )]E [f2 (X1, . . . ,Xd )]

holds for all real-valued f1 and f2 which are increasing. [Joe, 1997]
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Beyond Linear Dependence: Multivariate Association

• The concept of UND is directly relevant in extremes modelling as it
involves explicitly the concept of a lower bound on the joint probability of
a large event occurring in all the d processes given by the product of the
probability that such an event happens in each process marginally.

Properties of NA Random Variables
Consider a sequence of random variables {Xi}i≥1 which satisfy that they are
NA, then the following properties apply
• A subset of two or more NA random variables is NA.
• A set of independent random variables is NA.
• Increasing functions defined on disjoint subsets of a set of NA random

variables are NA.
• Unions of independent sets of NA random variables are NA.

[Joag et al 1983]
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NA, then the following properties apply
• A subset of two or more NA random variables is NA.
• A set of independent random variables is NA.
• Increasing functions defined on disjoint subsets of a set of NA random

variables are NA.
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[Joag et al 1983]

23 / 95



Beyond Linear Dependence: Quadrant Dependence

• A third notion of dependence that is of significance is pairwise quadrant
dependence[Lehmann et al 1966]

Definition: Pairwise Negative Quadrant Dependence
A pair of random variables Xi and Xj are pairwise negative quadrant
dependent (PNQD) if for all x , y ∈ R one has

Pr [Xi ≤ x ,Xj ≤ y ] ≤ Pr [Xi ≤ x ]Pr [Xj ≤ y ] .

Definition: Pairwise Positive Quadrant Dependence (PPQD)
A pair of random variables Xi and Xj are said to be pairwise positive quadrant
dependent (PPQD) if for all x , y ∈ R one has

Pr [Xi ≤ x ,Xj ≤ y ] ≥ Pr [Xi ≤ x ]Pr [Xj ≤ y ] .

Note: if Xi and Xj are PQD then one has C
(

FXi (x),FXj (y)
)
≥ FXi (x)FXj (y)

for all
(

FXi (x),FXj (y)
)

in the unit square.
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Beyond Linear Dependence: Quadrant Dependence

Remark
Intuitively, X and Y are PQD if the probability that they are simultaneously
small (or simultaneously large) is at least as great as it would be were they
independent.

• Like independence, quadrant dependence (positive or negative) is a
property of the copula of continuous random variables, and
consequently is invariant under strictly increasing transformations of the
random variables.

• If X and Y are PQD, then the graph of the copula of X and Y given by C
lies on or above the graph of the independence copula Π ie.
C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2.

• Many examples of copula model families exist that satisfy quadrant
dependence.
Example: many totally ordered one-parameter families of copulas have
subfamilies of PQD copulas and NQD copulas.
• Example: the Mardia family, the Farlie-Gumbel-Morgenstein FGM family, the

Ali-Mikhail-Haq AMH family, or the Frank Archimedean family satisfy that
they are PQD for copula parameter ρ ≥ 0 and NQD for ρ ≤ 0 with ρ = 0
giving C = Π.
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Beyond Linear Dependence: Orthant Dependence

• Other notions of dependence: positive lower orthant dependence, left tail
decreasing in sequence and multivariate left tail decreasing as
summarized in [Hua et al 2011]

Positive Lower Orthant Dependence
A random vector has Positive Lower Orthant Dependence if its distribution
satisfies

Pr [X1 ≤ x1, . . . ,Xd ≤ xd ] ≥
d∏

i=1

Pr [Xi ≤ xi ]

• Note: PLOD dependence is just an opposite inequality sign direction
compared to LND, defined previously.

Remark
One can relate notions of Quadrant and Orthant Dependence to model
based characterizations in a number of ways.
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Concordance and Dependence Measures

Orthant Dependence and Concordance
Consider two d-copulas C1 and C2 then the following relationship between
orthant dependencies and concordance holds:

• C1 is more Positive Lower Orthant Dependent than C2 if for all
u ∈ [0, 1]d one has C1(u) ≥ C2(u);

• C1 is more Positive Upper Orthant Dependent than C2 if for all
u ∈ [0, 1]d one has C1(u) ≥ C2(u);

• C1 is more Positive Orthant Dependent than C2, or C1 is more
concordant than C2 if for all u ∈ [0, 1]d , both C1(u) ≥ C2(u) and
C1(u) ≥ C2(u) holds.
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Beyond Linear Dependence: Tail Monotonicity

The notion of PQD(X ,Y ) can be rewritten conditionally

To see this consider the following representations:

Pr [X ≤ x ,Y ≤ y ] ≥ Pr [X ≤ x ]Pr [Y ≤ y ] , or as

Pr [X ≤ x |Y ≤ y ] ≥ Pr [X ≤ x ] , or as

Pr [X ≤ x |Y ≤ y ] ≥ Pr [X ≤ x |Y ≤ ∞]

One can now also observe that a stronger condition than Quadrant
dependence is to require that for each x ∈ R, the conditional distribution
function Pr [X ≤ x |Y ≤ y ] is a non-increasing function of y .

Remark
This stronger condition leads to the notion of Tail Decreasing and Tail
Increasing, [Esary and Proschan, 1972].
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Beyond Linear Dependence: Tail Monotonicity

Tail Increasing and Decreasing
In the case of two random variables X and Y one can define the following:

• Y is left tail decreasing in X ie. LTD(Y |X ) if Pr [Y ≤ y |X ≤ x ] is a
non-increasing function of x for all y .

• X is left tail decreasing in Y ie. LTD(X |Y ) if Pr [X ≤ x |Y ≤ y ] is a
non-increasing function of y for all x .

• Y is right tail increasing in X ie. RTI(Y |X ) if Pr [Y > y |X > x ] is a
non-decreasing function of x for all y .

• X is right tail increasing in Y ie. RTI(X |Y ) if Pr [X > x |Y > y ] is a
non-decreasing function of y for all x .

Each of the four tail monotonicity conditions implies positive quadrant
dependence.

• Analogously, negative dependence properties, known as left tail
increasing and right tail decreasing, are defined by exchanging the words
nonincreasing and nondecreasing. [Kimeldorf and Sampson, 1987]
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Beyond Linear Dependence: Tail Monotonicity

Copula Conditions for Tail Increase or Decrease
Consider r.v.’s X and Y with copula C then:

• LTD(Y |X) holds iff for any v ∈ [0, 1] one has that C(u, v)/u is nonincreasing in u,
or equivalently one has that

∂C(u, v)

∂u
≤

C(u, v)

u
, almost all u;

• LTD(X |Y ) holds iff for any u ∈ [0, 1] one has that C(u, v)/v is nonincreasing in v ,
or equivalently one has that

∂C(u, v)

∂v
≤

C(u, v)

v
, almost all v;

• RTI(Y |X) holds iff for any v ∈ [0, 1] one has that [1− u − v + C(u, v)] /(1− u)
is nonincreasing in u, or equivalently one has that

∂C(u, v)

∂u
≥

[v − C(u, v)]

1− u
, almost all u;

• RTI(X |Y ) holds iff for any u ∈ [0, 1] one has that [1− u − v + C(u, v)] /(1− v)
is nonincreasing in v , or equivalently one has that

∂C(u, v)

∂v
≤

[u − C(u, v)]

1− v
, almost all v;
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Beyond Linear Dependence: Tail Monotonicity

One can also define more general notions of Tail Monotonicity building upon
Right or Left Tail Increasing

Definition: Right Tail Increasing
X1 is RTI in X2 if Pr (X1 > x |X2 > y) is a non-decreasing function of x for all y .

Definition: Left Tail Decreasing in Sequence
A random vector is Left Tail Decreasing in Sequence if its distribution satisfies

Pr [Xi ≤ xi |X1 ≤ x1, . . . ,Xi−1 ≤ xi−1] < Pr [Xi−1 ≤ xi−1|X1 ≤ x1, . . . ,Xi−2 ≤ xi−2]

for all i ∈ {1, 2, . . . , d}.

Definition: Multivariate Left Tail Decreasing
A random vector is Multivariate Left Tail Decreasing if its distribution satisfies
that the random vector

(
Xi1 , . . . ,Xid

)
is LTDS for all possible permutations

(i1, . . . , id ) of (1, . . . , d).

• Note, analogous definitions for positive upper orthant dependence, right
tail increasing in sequence and multivariate right tail increasing can be
defined.
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Beyond Linear Dependence: Regression Dependence

• Another notion for modelling dependence structures is regression
dependence or Stochastic Increase/Decrease .

• It is based upon setting up a conditional probability in a ratio, such that if
one of the variables were independent, then the ratio should collapse to
unity.

• Regression dependence captures limited positive and negative
dependence features, in particular quadrant dependence.

Stochastic Increase and Decrease Dependence
Consider random variable X and Y , then:
• Postive Dependence: Y is Stochastically Increasing in X , SI(Y |X ) if
Pr [Y > y |X = x ] is non-decreasing function of x for all y .

• Postive Dependence: X is Stochastically Increasing in Y , SI(X |Y ) if
Pr [X > x |Y = y ] is non-decreasing function of y for all x .

• Negative Dependence: Y is Stochastically Decreasing in X , SD(Y |X )
if Pr [Y > y |X = x ] is non-increasing function of x for all y .

• Negative Dependence: X is Stochastically Decreasing in Y , SD(X |Y )
if Pr [X > x |Y = y ] is non-decreasing function of y for all x .

see [Shaked, 1977].
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Beyond Linear Dependence:

One can also link the notion of Statistic Increase/Decrease to copula
properties as follows:

Stochastic Increase and Decrease Dependence
Consider continous random variables X and Y with copula C, then:

• Y is Stochastically Increasing in X , SI(Y |X ) iff for any v ∈ [0, 1] one has
that ∂C(u,v)

∂u is non-increasing in u, i.e. C(u, v) is a concave function of u.
• X is Stochastically Increasing in Y , SI(X |Y ) iff for any u ∈ [0, 1] one has

that ∂C(u,v)
∂v is non-increasing in v , i.e. C(u, v) is a concave function of v .

• If SI(Y |X ), then one as LTD(Y |X ) and RTI(Y |X );
• If SI(X |Y ), then one as LTD(X |Y ) and RTI(X |Y );
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Beyond Linear Dependence:

A remark on the difference between Stochastic Ordering and Comonotonicity.

Comonotonicity and Stochastically Decreasing
The concept of stochastic ordering with regard to stochastically decreasing
variables, i.e. SD (X1|X2), involves a dependence relation imposed which
excludes any extremely positive dependence structures such as those arising
from comonotonic random variables.

• The notion of comonotonicity involves the perfect positive dependence
between the components of a random vector. This means that they can
be represented as increasing functions of a single random variable.

Definition: Comonotonicity
A random vector (X1, . . . ,Xd ) as comonotonic if its multivariate distribution
satisfies

Pr [X1 ≤ x1, . . . ,Xd ≤ xd ] = min
i∈{1,...,d}

Pr [Xi ≤ xi ] .
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Beyond Linear Dependence:

Definition: Bivariate Total Positivity Order 2
(X1,X2) has total positive dependence of order 2 if:

det
[

F (x , y) F (x , y ′)
F (x ′, y) F (x ′y ′)

]
≥ 0

whenever x ≤ x ′ and y ≤ y ′.

Definition: Multivariate Total Positivity Order 2
Random Vector (X1, . . . ,Xd ) with density f has total positivity dependence of
order 2 (MTP2) if:

f (x ∨ y) f (x ∧ y) ≥ f (x) f (y)

for all x , y ∈ Rd . [Nelson, 1992]

• If a random vectors density is MTP2 then so are all of its marginal
densities of order 2 and higher.

• IF the above inequality expression has its inequality sign reversed, then
the density f is said to be multivariate reverse rule of order 2 (MRR2)
which is a weak negative dependence concept. Unlike MTP2, the
property of MRR2 is not closed under marginalization!
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the density f is said to be multivariate reverse rule of order 2 (MRR2)
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Beyond Linear Dependence: Properties of Total Positivity

Properties of Total Positivity and Max/Min-id

Powers of Univaraite Distributions

Consider a univariate distribution F and tail F , if γ > 0 then Fγ and F
γ

are
distributions (tail functions).

Powers of Multivaraite Distributions, Max-ID and Min-ID

Consider a random vector X ∈ Rd with multivariate distribution F and tail F .
• If γ > d − 1 then Fγ (F

γ
) are distributions (tail functions).

• If Fγ is a distribution for γ > 0 then F is max-infinitely divisible (max-id).
• If F

γ
is a tail function for γ > 0 then F is min-infinitely divisible (min-id).

• If random vector X ∈ Rd has a distribution F which is max-id then for all
m ∈ N one has F 1/m is a distribution.
• If

(
X m

i1 , . . . ,X
m
id

)
, i = 1, . . . , d are i.i.d. with distribution F 1/m, then

X d
=

(
max

i
X m

i1 , . . . ,max
i

X m
id

)
where max is over all indices 1, . . . , d .

• In bivariate case: F is max-id iff F is TP2
• In bivariate case: F is min-id iff F is TP2
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SSM and Dependence

Section 2:

* General Concepts of Dependence Part II

* Measures of Dependence and Concordance
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Concordance and Dependence Measures

Some basic definitions of relevance:
NOTE: Symmetries and Permutations

• Symmetries: a symmetry of [0, 1]d is a one-to-one, onto map
φ : [0, 1]d 7→ [0, 1]d of form φ(x1, . . . , xd ) = (u1, . . . , ud ) where for each i
one has ui = xki or 1− xki and where (k1, . . . , kd ) is a permutation of
(1, . . . , n).

• Permutation: the map φ is a permutation if for each i one has ui = xki .
• Reflection: the map φ is a reflection if for each i one has ui = xi or

ui = 1− xi .
• Elementary reflections: an elementary reflection of the i-th component,

denoted σi is given by

σi (x1, . . . , xd ) = (x1, . . . , xi−1, 1− xi , xi+1, . . . , xd )

• Symmetry Length: the length of a symmetry is denoted by |φ| and
corresponds to the number elementary reflections required to obtain it.

Linking Concordance Measures of Dependence to Parameteric Dependence
Models!
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Concordance and Dependence Measures

• Measuring the dependence between random variables has long been of
interest to statisticians and practitioners.

• [Scarsini, 1984] provides the following intuitive definition of dependence
which aligns with the notions of dependence previously discussed:

“Dependence is a matter of association between X and Y
along any measurable function, i.e. the more X and Y tend to
cluster around the graph of a function, either y = f (x) or
x = g(y), the more they are dependent.”

• The choice of dependence measure is influenced by the type of
dependence one seeks to study, such as lower left quadrant, upper right
quadrant etc.

Concordance
Informally, a pair of random variables are concordant if ’large’ values of one
tend to be associated with ’large’ values of the other and ’small’ values of one
with ’small’ values of the other. Analogous definitions of discordance are
available in reverse directions.
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Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:

• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of
every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.

• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of
continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Scarsini, 1984] gave a set of axioms for general concordance measures κ.

Definition: Multivariate Concordance Measures
A general concordance measures κ is a function attaching to all d-tuples of continuous
r.v.’s (X1,X2, . . . ,Xd ) defined on a common probability space, when d ≥ 2, a real
number κ (X1,X2, . . . ,Xd ) satisfying:
• Normalization:κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of

every other Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent.

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd )

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k →∞, then
κ (Xk1, . . . ,Xkd )→ κ (X1, . . . ,Xd ).

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ
(
Xi1 , . . . ,Xid

)
= κ (X1, . . . ,Xn).

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn)

• Reflection Symmetry:
∑
ε1,...,εd =±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is

over 2d vectors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1}.
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of

continous r.v.’s (X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

42 / 95



Concordance and Dependence Measures

[Taylor, 2006] axioms for general concordance measures κ via copula.

Definition: Multivariate Concordance Measures
Consider a sequence of maps κd : Cop(d) 7→ R and a sequence of numbers
{rd}, such that if A,B,C and Cm are d-copulas and n ≥ 2 then:

• Normalization:κ
(
Md) = 1 and κ

(
Πd) = 0.

• Monotonicity: If A <st B and A ≤st B then κd (A) ≤ κd (B)

• Continuity: If Cm → C, then κd (Cm)→ κd (C) as m→∞.
• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , d) then
κ
(
C(ui1 , . . . , uid )

)
= κ (c(u1, . . . , ud )).

• Duality: κd (c(1− u1, . . . , 1− ud ) = κd (c(u1, . . . , ud ))

• Reflection Symmetry:
∑

Ψ∈Rd
κd
(
CΨ
)

= 0, where Ψ is a reflection,
Ψ ∈ Rd is an element of the subgroup of reflections in the group of
symmetries under composition S([0, 1]d ).

• Transition:

rnκd (C) = κn+1 (E) + κn+1 (E(1− u1, u2, . . . , ud ))

whenever E is an (d + 1)-copula s.t. C(u1, . . . , ud ) = E(1, u1, . . . , ud ).
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• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , d) then
κ
(
C(ui1 , . . . , uid )

)
= κ (c(u1, . . . , ud )).

• Duality: κd (c(1− u1, . . . , 1− ud ) = κd (c(u1, . . . , ud ))

• Reflection Symmetry:
∑

Ψ∈Rd
κd
(
CΨ
)

= 0, where Ψ is a reflection,
Ψ ∈ Rd is an element of the subgroup of reflections in the group of
symmetries under composition S([0, 1]d ).

• Transition:

rnκd (C) = κn+1 (E) + κn+1 (E(1− u1, u2, . . . , ud ))

whenever E is an (d + 1)-copula s.t. C(u1, . . . , ud ) = E(1, u1, . . . , ud ).
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Concordance and Dependence Measures

Theorem: Properties of Concordance Measures Satisfying
[Taylor, 2006] Axioms

Consider the d-copula that is permutation symmetric ie. Cζ = C for all
permuations ζ of [0, 1]d . Then for all measures of concordance κ and for all
symmetries Ψ and ζ of [0, 1]d one has

κd (CΨ) = κd (Cζ)

whenever |Ψ| = |ζ| or |Ψ|+ |ζ| = d

Recall: symmetry length | · | corresponds to the number elementary
reflections required to obtain it.

Corollary

For all d ≥ 2 and for all symmetries Ψ and ζ of [0, 1]d such that |Ψ| = |ζ| or
|Ψ|+ |ζ| = d one has

κd (MΨ) = κd (Mζ).

where M is the d-Frechet-Hoffding Upper Bound copula under permutation.
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Concordance and Dependence Measures

Example: consider the well known measure of concordance versus
discordance which is an association measure - Kendall’s tau.

Kendall’s Tau
The population Kendall’s tau is the probability of concordance minus the
probability of discordance, given for two random vectors (X1,Y1) and (X2,Y2)
by

τ = Pr [(X1 − X2)(Y1 − Y2) > 0]− Pr [(X1 − X2)(Y1 − Y2) < 0]

Relating Copulas to Concordance Measures of Association
Consider the concordance function κ quantifying the difference in
probabilities of concordance and discordance for bi-variate random vectors
(X1,Y1) and (X2,Y2).
• Assume X1 and X2 have common continuous marginal FX

• Assume Y1 and Y2 have common continuous marginal FY

• Assume (X1,Y1) and (X2,Y2) have different copula C1 and C2

respectively.
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Concordance and Dependence Measures

[Nelson, 2002] proposed an alternative copula specified concordance
function κ measuring the probability of concordance and discordance given
by

κ = Pr [(X1 − X2)(Y1 − Y2) > 0]− Pr [(X1 − X2)(Y1 − Y2) < 0]

= 4
∫ 1

0

∫ 1

0
C2(u, v)dC1(u, v)− 1.

One can show in under this concordance-discordance measure the results:
• κ(C1,C2) ∈ [−1, 1]

• κ(C,Πd ) ∈ [−1/3, 1/3]

• κ(C,Md ) ∈ [0, 1]

• κ(C,W d ) ∈ [−1, 0]

Recall: Md - Frechet-Hoffding Upper-Bound; W d - Frechet-Hoffding
Lower-Bound; and Πd - independence copula.
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Concordance and Dependence Measures

Standard measures of dependence include Pearson’s Product Moment
Correlation Coefficient [Pearson, 1896] which extended the median and
semi-interquartile range of [Galton, 1889].

Definition: Pearson’s Correlation Coefficient
Consider two random variables X and Y with finite second moments
E
[
X 2] <∞ and E

[
Y 2] <∞, Pearsons correlation is

ρ :=
Cov [X ,Y ]√
Var [X ]Var [Y ]

.

• Pearson’s correlation coefficient is a measure of how well the two
random variables can be described by a linear function

• Arise from the fact that such a measure of dependence is invariant under
strictly increasing linear transformations

ρ[αi + βiXi , αj + βjxj ] = ρ[Xi ,Xj ], βi , βj > 0.
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X 2] <∞ and E

[
Y 2] <∞, Pearsons correlation is

ρ :=
Cov [X ,Y ]√
Var [X ]Var [Y ]

.

• Pearson’s correlation coefficient is a measure of how well the two
random variables can be described by a linear function

• Arise from the fact that such a measure of dependence is invariant under
strictly increasing linear transformations

ρ[αi + βiXi , αj + βjxj ] = ρ[Xi ,Xj ], βi , βj > 0.
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Concordance and Dependence Measures

Other concordance measures of interest include those based on ranks.

• Rank correlations measure the relationship between the rankings of
variables, i.e after assigning the labels “first”, “second”, “third”, etc. to
different observations of a particular variable.

• Such concordance measures typically lie in the interval [1, 1], where +1
indicates the agreement between the two rankings is perfect, i.e. the
same; −1 indicates the disagreement between the two rankings is
perfect, i.e. one ranking is the reverse of the other; 0 indicates the
rankings are completely independent.

• Due to this scale-invariance, rank correlations thus provide an approach
for fitting copulae to data.
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Concordance and Dependence Measures

Example: [Spearman, 1904] developed a measure to assesses how well the
dependence between two random variables can be described by a monotonic
function.

A simple scalar measure of dependence that depends on the copula of two
random variables but not on their marginal distributions.

Definition: Bivariate Spearman’s Rank Correlation Coefficient

Consider two sets of order statistics
{

X(i,n)

}d
i=1 and

{
Y(i,n)

}d
i=1, then

spearman’s rank correlation is

ρ :=

∑d
i=1 (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2(yi − ȳ)2

where xi , yi are the ranks.
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Concordance and Dependence Measures

Spearman’s Rank Correlation via Copula
The bivariate Spearman’s Rank Correlation can be expressed explicitly via
the bivaraite copula C according to

ρ = 12
∫

[0,1]

∫
[0,1]

u1u2dC (u1, u2)− 3.

The multivariate extension of Spearman’s Rank Correlation is developed in
[Nelson,2002] for d-dim random vectors.

Definition: Multivariate Generalized Spearman’s Rho
Consider the n-copula given by C and the permuted copula Cσ according to

ρd (C) = αd

(∫
[0,1]d

(C + Cσ) dΠd − 1
2d−1

)

where one has αd = (d+1)2d−1

2d−(d+1)
and Πd is the d-Independence Copula.
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Concordance and Dependence Measures

Definition: Bivariate Blomqvist’s Beta
Consider two random variables X1 and X2, then Blomqvist’s Beta is given by

ρβ [X1,X2] := Pr [(X1 −med (X1)) (X2 −med (X2)) > 0]

− Pr [(X1 −med (X1)) (X2 −med (X2)) < 0]

where med (Xi ) is the median of random variable X1, [Blomqvist, 1950].

• The empirical version ρ̂β of Blomqvists beta is a suitably scaled version
of the proportion of points whose components are either both smaller, or
both larger, than their respective sample medians

• The computation of ρ̂β involves only O(n) operations, as opposed to
O(n2) for the empirical versions of Kendalls tau and Spearmans rho.
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Concordance and Dependence Measures

Blomqvist’s Beta via Copula
The bivariate Blomqvist’s Beta can be expressed explicitly via the bivaraite
copula C according to

β = 4C
(

1
2
,

1
2

)
− 1.

• [Genest et al, 2013] proposed the inversion of this expression to perform
explicit parameter estimation for several copula models.

[Nelsen,2002] generalized this measure to d-dim.

Definition: Generalized Blomqvist’s Beta
Consider an d-copula C, then the generalized Blomqvist’s Beta is given by

βd (C) = αd

(
C(

1
2
, . . . ,

1
2

)− 1
2d

)
where αd = 2d

2d−1−1
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Concordance and Dependence Measures

Intermediate Directional Dependence

• Direction dependence measures of association, see [Nelsen, 2012].

3-Copula ρ-Directional Dependence

Consider a random vector X = (X1,X2,X3) with X ∈ R3 and associated
3-dimensional copula CX . Then for any direction (α1, α2, α3) characterised by
the vector components αi ∈ {−1, 1} for i ∈ {1, 2, 3}, one has the
ρ-directional dependence given by

ρ
(α1,α2,α3)
X1,X2,X3

=
α1α2ρX1,Xx + α2α3ρX2,X3 + α3α1ρX3,X1

3

+ α1α2α3
ρ+

X1,X2,X3
− ρ−X1,X2,X3

2

with pairwise Spearman’s rho and

ρ+
X1,X2,X3

(CX ) = 8
∫

[0,1]3
CX (u, v ,w)dudvdw − 1,

ρ−X1,X2,X3
(CX ) = 8

∫
[0,1]3

CX (u, v ,w)dudvdw − 1.
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Concordance and Dependence Measures

Remark
The eight vectors which characterize directions (α1, α2, α3) where
αi ∈ {−1, 1} for i ∈ {1, 2, 3} in [0, 1]3 allow one to utilise the ρ-directional
dependence to measure directional dependence in different quadrants.

• Example: if ρ(−1,−1,1)
X or ρ(1,1,−1)

X are positive, then there will be positive
dependence in the direction of (−1,−1, 1) or (1, 1,−1), hence one
would expect large (small) values of X1 and X2 to occur with small (large)
values of X3, ie. ρX1,X2 > 0 with ρX1,X3 < 0 and ρX2,X3 < 0.
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Concordance and Dependence Measures

Reasons we need to consider other concordance measures:

• Correlation is defined if variances of Xi and Xj are finite: excludes
heavy-tailed distributions with infinite variance.

• It is not invariant under strictly increasing nonlinear transformations T (·)
and T̃ (·). In general, ρ[T (Xi ), T̃ (Xj )] 6= ρ[Xi ,Xj ].

• Independence between random variables implies that linear correlation
is zero. However, in general, zero linear correlation does not imply
independence.

Extending the notions of concordance measure beyond linear relationships
through model based characteristics has been done from first principles by
[Taylor, 2007] in the multivariate setting extending [Scarsini, 1984]
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Concordance and Dependence Measures

Concordance measures used to avoid dependence on existance of integer
moments include: see [Kokoszka et al, 1994], [Samorodnitsky, G.; Taqqu,
M.S., 1994] and [Nowicka et al, 2008].

Definition: Co-difference and Co-Variation
Consider X1 and X2 jointly distributed as symmetric α-Stable SαS with
α ∈ (1, 2). Then the co-variation and co-difference are defined by

1 Co-Difference:

CD (X1,X2) = lnE [exp (iX1 − iX2)]− lnE [exp (iX1)]− lnE [exp (−iX2)]

2 Co-Variation:
CV (X1,X2) =

∫
S2

s1s<α−1>
2 Γ(ds),

where z<p> = |z|psgn(z) and S2 is the unit 2-sphere defined by

S2 =
{

x ∈ R3 : ||x || = r
}

Note: Discussion on Copula and Spectral Measure Relationships Later!
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Concordance and Dependence Measures

Properties of Covariation and Codifference
• In contrast to the co-difference, the covariation is not symmetric in its

arguments.

• If α > 1 then the covariation induces a norm on the linear sub-space of
jointly SαS random variables

||X ||α = [CV (X1,X2)]1/α

• The codifference can be written

CD (X1,X2) = ||X1||αα + ||X2||αα − ||X1 − X2||αα

• If α = 2 then co-difference, co-variation and covariance are related as
follows:

Cov (X1,X2) = 2CV (X1,X2) = CD (X1,X2)
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Concordance and Dependence Measures

Extreme Directional Dependence: Tail Dependence Parameters, Functions
and Tail Order Functions

The importance of thinking about tail dependence was succinctly
summarised in the questions posed in [Charpentier, 2003] as detailed below:

1 Consider data taken from a multivariate distribution anywhere in its
support then through a measure of dependence it is possible to obtain
all the overall dependence structure between say two random variables
X1 and X2.

However, it is interesting to question whether dependence properties still
hold if focusing only on extremes of the distribution in any particular

quadrant?

For instance if the correlation between X1 and X2 is positive, is it
reasonable to assume that the correlation between extreme values of X1

and extreme values of X2 will still be positive or even present at all ?
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Concordance and Dependence Measures

• Tail dependence provides one approach to quantification of the
dependence in extremes of a multivariate distribution.

• The notion of bivariate tail dependence coefficient is defined as the
conditional probability that a random variable exceeds a certain
threshold given that the other random variable in the joint distribution has
exceeded this threshold.

• The tail dependence coefficients are invariant to strictly increasing
transformations of the margins.

• If a random vector satisfies the definition of negative regression
dependence then it will always have upper tail dependence of zero

Remark
Similar to rank correlations, the tail dependence coefficient is a simple scalar
measure of dependence that depends on the copula not the marginals.
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Concordance and Dependence Measures
Bivariate tail dependence coefficient is given as follows:

Definition: Bivariate Tail Dependence Coefficient
Consider r.v.’s X1 and X2 with marginal distributions Fi , i = 1, 2 and copula C,

Pr [X1 < x1,X2 < x2] = C (FX1 (x1) ,FX2 (x2)) .

The coefficient of upper tail dependence is given by:

λu := lim
u↑1

Pr
[
X2 > F−1

2 (u) |X1 > F−1
1 (u)

]
= lim

u↑1

1− 2u + C(u, u)

1− u

and the coefficient of lower tail dependence given by:

λl := lim
u↓0

Pr
[
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

]
= lim

u↓0

C(u, u)

u

• Recall: C̃(1− u, 1− u) = 1− 2u − C(u, u). Hence, the above
relationships show that the upper tail dependence coefficients of copula
C is also equal to the lower tail dependence coefficient of the survival
copula of C.

• Analogously, the lower tail dependence coefficient of copula C is the
upper tail dependence coefficient of the survival copula.

• λu and λl belong to the range [0, 1], provided the limits exist.
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Concordance and Dependence Measures

Properties of Tail Dependence Coefficient
Consider two loss random variables with marginal loss distributions Xi ∼ FXi

and a joint dependence modelled by the copula C, then defining the constant

c = lim
x→∞

F X2 (x)

F X1 (x)

one can show the following features of upper tail dependence:
• The upper tail dependence satisfies the bound

cλu ≤ λ̂ ≤ min(c, λu)

with

λ̂ = lim
x→∞

1− FX1 (x)− FX2 (x) + C (FX1 (x),FX2 (x))

1− FX1 (x)
.
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Concordance and Dependence Measures

Properties of Tail Dependence Coefficient Cont. I
Define the constant

c = lim
x→∞

F X2 (x)

F X1 (x)

then one can show:

• the following relationship between the maximum of a sum of two random
variables and the tail dependence holds

Pr [max {X1,X2} > x ] ∼
(

1 + c − λ̂
)

F X1 (x)

and the tail result given by

lim
x→∞

Pr [X1 > x |max {X1,X2} > x ] =
1

1 + c − λ̂
.

• The following worst case bounds can be obtained

F X1 (x) << Pr [X1 + X2 > x ] << (1 + c)F X1

(x
2

)
.
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• The following worst case bounds can be obtained

F X1 (x) << Pr [X1 + X2 > x ] << (1 + c)F X1

(x
2

)
.
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Finally, one can also obtain the following upper and lower bounds for
common marginals.

Properties of Tail Dependence Coefficient Cont. II
• Consider the identically distributed losses Xi ∼ FX (x) with a copula

distribution C(u1, u2) = C (FX (x),FX (y)), then one can obtain the
following upper and lower bounds

λu ≤ lim inf
x→∞

Pr [c1X1 + c2X2 > x ]

Pr
[
X1 >

x
c1+c2

]
,

lim sup
x→∞

Pr [c1X1 + c2X2 > x ]

Pr
[
X1 >

x
c1+c2

] ≤ 2− λu,

for constants c1 and c2 satisfying y = c1x
(c1+c2)

.
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Definition: Multivariate Tail Dependence[Li, 2009]

Let X = (X1, ...,Xd )T be a d-dimensional random vector with marginal
distributions F1, ...,Fd and copula C.

1 The coefficient of multivariate upper tail dependence (upper orthant
dependence) is:

λ
1,...,h|h+1,...,d
u

= lim
ν→1−

P
(

X1 > F−1(ν), . . . ,Xh > F−1(ν)|Xh+1 > F−1(ν), . . . ,Xd > F−1(ν)
)

= lim
ν→1−

C̃d (1− ν, . . . , 1− ν)

C̃n−h(1− ν, . . . , 1− ν)

where C̃ is the survival copula of C.

2 The coefficient of multivariate lower tail dependence (lower orthant
dependence) is:

λ
1,...,h|h+1,...,d
l

= lim
ν→0+

P
(

X1 < F−1(ν), . . . ,Xh < F−1(ν)|Xh+1 < F−1(ν), . . . ,Xd < F−1(ν)
)

= lim
ν→0+

Cd (ν, . . . , ν)

Cn−h(ν, . . . , ν)

h is the number of variables conditioned on from d-dim.
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Multivariate Tail Dependence to Tail Dependence Functions

[Kluppelberg et al, 2008] define the tail dependence function:

Tail Dependence Function

Consider a random vector X ∈ Rd for d ≥ 2, then the tail dependence
function is given by

λ (x1, x2, . . . , xd ) = lim
t→0

1
t
Pr
[
F X1 (X1) ≤ tx1, . . . ,F Xd (Xd ) ≤ txd

]
.

[Joe et al, 2010] studied tail dependence functions via copulas.
NOTE: The definition adopted in ? for the upper and lower tail dependence
functions differs since each marginal can go to the limit at different rates.
• Lower Tail Dependence Function is given by

λl (t ; C) = lim
u↓0

C (ut1, . . . , utd )

u
, ∀t = (t1, . . . , td ) ∈ Rd

+

• Upper Tail Dependence Function is given by

λu (t ; C) = lim
u↓0

C (ut1, . . . , utd )

u
, ∀t = (t1, . . . , td ) ∈ Rd

+

with survival copula distribution C (u1, . . . , ud ) = C (1− u1, . . . , 1− ud ).
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Other measures of extreme dependence are available: multivariate EVT
inspired measure - χ

Definition: χ - Measure of Extremal Dependence
A modified measure of extreme dependence is given by the following quantity

χ :=
2 log Pr(U > u)

log Pr(U > u,V > v)
− 1 =

2 log(1− u)

log C̄(u, u)
− 1

where −1 < χ(u) ≤ 1 for all 0 ≤ u ≤ 1.

• χ̄ increases with dependence strength and equals unity for
asymptotically dependent variables.

• In the case of a multivariate Gaussian model, the dependence measure
χ is equal to the correlation.

• [Coles, 1999] argues that using χ in addition to a tail dependence
measure gives a more complete summary of extremal dependence.
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Example: Linking Orthant Extreme Dependence to Spectral Measures

Consider the bivariate example for the upper tail dependence:

λu = lim
u↑1

Pr
(

X1 > F−1
X1

(u)|X2 > F−1
X2

(u)
)

= lim
u↑1

1− 2u + C(u, u)

1− u
.

Recall that for a set A ⊂ Sd one can define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then one has the extreme relationship

lim
r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
= lim

r→∞
Pr ( X ∈ Cone(A)| ||X || > r) =

Γ(A)

Γ(Sd )

How do we link tail dependence (e.g. λu) to the Spectral Measure Γ(·) ?
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First: Observe that if one selects the set A to be the upper right quadrant
mapped out by the angle [0, π/2] that makes the cone Cone(A) correspond
to an arc on the top right quadrant, then one has the following relationship:

 

Area 1 

Area 2 

Area 3 

Cone(A) 

r 

X1 

X2 

U(r) = F(X1) 

U(r) = F(X2) 
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Concordance and Dependence Measures

Rewrite these probabilities for Area 1, Area 2 and Area 3.

Pr ( X ∈ Cone(A)| ||X || > r) = Pr (X1 > x1,X2 > x2)︸ ︷︷ ︸
Area 1

+ [Pr (X1 < x1,X2 > x2)− Pr ( X1 < x1,X2 ∈ [x2, r ]| ||X || < r)]︸ ︷︷ ︸
Area 2

+ [Pr (X1 > x1,X2 < x2)− Pr ( X1 ∈ [x1, r ] ,X2 < x2| ||X || < r)]︸ ︷︷ ︸
Area 3

• If we now take the limit on both sides, we will be able to obtain the link
between the tail dependence of the random vector X and the spectral
measure Γ(·).

• Next we see some examples and special cases of results
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Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!
• Example: consider the class of random vectors X ∈ Rd which have an

infinitely divisible law.

Definition: Levy-Khintchine Formula
A probabilty law µ of a real-valued random vector is inifinitely divisible with
characteristic exponent Ψ, given by∫

Rd
exp (i < θ, x >)µ(dx) = exp (−Ψ(θ)) , forθ ∈ Rd

iff there exists a triple (a,Σ,W (dx)), where a ∈ Rd , Σ ∈ SPD(Rd ) and
W (dx) is a measure concentrated on Rd \ {0} satisfying∫
Rd

(
1 ∧ ||x ||2

)
W (dx) <∞, s.t.

Ψ(θ) = i < a,θ > +
1
2
θΣθT +

∫
Rd

(
1− ei<θ,x> + i < θ, x > I||x||<1

)
W (dx)

• Measure W (dx) is known as the Levy measure and it is unique.
• Spectral measure can be shown to be directly linked to aspects of

dependence of the random vector.
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Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!

One can map between the spectral measure W (dx) defined on Rd and the
spectral measure in polar co-ordinates on unit hyper-sphere Γ(ds) on Sd as
shown in the pure-jump process setting of Tempered Stable models, see e.g.
[Rosinski, 2007].

• In polar co-ordinates, [Araujo and Gine, 1980] show a link between
spectral measure and extreme regional (quadrant etc.) types of
dependence.

Spectral Measure to Quadrant Extreme Dependence
Consider a set A ⊂ Sd , and define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then
lim

r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
=

Γ(A)

Γ(Sd )

The mass that Γ(·) assigns to A determines the tail behavior of X in the
direction of A.

71 / 95



Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!

One can map between the spectral measure W (dx) defined on Rd and the
spectral measure in polar co-ordinates on unit hyper-sphere Γ(ds) on Sd as
shown in the pure-jump process setting of Tempered Stable models, see e.g.
[Rosinski, 2007].
• In polar co-ordinates, [Araujo and Gine, 1980] show a link between

spectral measure and extreme regional (quadrant etc.) types of
dependence.

Spectral Measure to Quadrant Extreme Dependence
Consider a set A ⊂ Sd , and define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then
lim

r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
=

Γ(A)

Γ(Sd )

The mass that Γ(·) assigns to A determines the tail behavior of X in the
direction of A.

71 / 95



Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!

One can map between the spectral measure W (dx) defined on Rd and the
spectral measure in polar co-ordinates on unit hyper-sphere Γ(ds) on Sd as
shown in the pure-jump process setting of Tempered Stable models, see e.g.
[Rosinski, 2007].
• In polar co-ordinates, [Araujo and Gine, 1980] show a link between

spectral measure and extreme regional (quadrant etc.) types of
dependence.

Spectral Measure to Quadrant Extreme Dependence
Consider a set A ⊂ Sd , and define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then
lim

r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
=

Γ(A)

Γ(Sd )

The mass that Γ(·) assigns to A determines the tail behavior of X in the
direction of A.

71 / 95



Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!

One can map between the spectral measure W (dx) defined on Rd and the
spectral measure in polar co-ordinates on unit hyper-sphere Γ(ds) on Sd as
shown in the pure-jump process setting of Tempered Stable models, see e.g.
[Rosinski, 2007].
• In polar co-ordinates, [Araujo and Gine, 1980] show a link between

spectral measure and extreme regional (quadrant etc.) types of
dependence.

Spectral Measure to Quadrant Extreme Dependence
Consider a set A ⊂ Sd , and define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then

lim
r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
=

Γ(A)

Γ(Sd )

The mass that Γ(·) assigns to A determines the tail behavior of X in the
direction of A.

71 / 95



Beyond Linear Dependence:

Linking Regional Dependence to Model Properties!

One can map between the spectral measure W (dx) defined on Rd and the
spectral measure in polar co-ordinates on unit hyper-sphere Γ(ds) on Sd as
shown in the pure-jump process setting of Tempered Stable models, see e.g.
[Rosinski, 2007].
• In polar co-ordinates, [Araujo and Gine, 1980] show a link between

spectral measure and extreme regional (quadrant etc.) types of
dependence.

Spectral Measure to Quadrant Extreme Dependence
Consider a set A ⊂ Sd , and define the cone generated by A to be

Cone(A) =

{
x ∈ Rd : ||x || > 0,

x
||x || ∈ A

}
= {ra : r > 0, a ∈ A} ,

then
lim

r→∞

Pr (X ∈ Cone(A), ||X || > r)

Pr (||X || > r)
=

Γ(A)

Γ(Sd )

The mass that Γ(·) assigns to A determines the tail behavior of X in the
direction of A.

71 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists

• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;

• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and

• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

[Embrechts, Lambrigger and Wuthrich, 2009] studied this type of result from
[Araujo and Gine, 1980] in elliptical families under context of multivariate
regular variation.

Definition: Multivariate Regular Variation
A random vector X = (X1, . . . ,Xd ) is multivariate regularly varying with index
−β < 0 if there exists
• a probability measure µ;
• a measurable function b : (0,∞) 7→ (0,∞) with limt→∞ b(t) =∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βµ(B) (5)

for any Borel set B ⊂
{

(x1, . . . , xd ) ∈ Rd | ||x || = 1
}

. Then X is said to be
MRVd (−β).

72 / 95



Beyond Linear Dependence: Multivariate Regular Variation

Remark
It can then be shown [Barbe, 2006] and [Resnick, 2004] that for
X ∈ MRVd (−β) for β > 0 one has

q (β, || · ||) = lim
x→∞

Pr (||X || > x)

Pr(X1 > x)
> 0 (6)

This will have implications for extremal quadrant/orthant dependence as
discussed later in Tail Dependence.

[Embrechts, Lambrigger and Wuthrich, 2009] linked this to quantiles:

Lemma: MVR Expressed Via Quantiles
If X = (X1, . . . ,Xd ) ∈ MRVd (−β) with β > 0 and identically distributed
marginals. Then for a measurable function ϕ : Rd 7→ R,

lim
x→∞

Pr (ϕ(X ) > x)

Pr (X1 > x)
= qϕ ∈ (0,∞) (7)

which implies that for quantile functions Q at level α one has

lim
α↑1

Qα (ϕ(X ))

Qα(X1)
= qϕ (8)
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Beyond Linear Dependence: Multivariate Regular Variation

[Resnick, 2004 & 2007] made connections between Multivariate Regular
Variation and spectral measure of a random vector as follows:

• Consider the random d-vector X ∈ Rd
+ which has a distribution which

satisfies X ∈ MVR(−β) with β > 0
• Define the positive part of unit d-sphere with respect to an arbitrary norm
|| · || : Rd 7→ R+ according to

Sd−1
+,||·|| =

{
x ∈ Rd

+| ||x || = 1
}

(9)

• Define the Radon measure (i.e. finite for all compact sub-sets) by µβ(B)
for all B ⊂ [0,∞]d \ {0} relatively compact with µβ(∂B) = 0

Then one can show the following relationship between such a measure and
the limiting behaviour of a MRV random vector:

lim
t→∞

tPr
(

X
b(t)

∈ B
)

= µβ(B) (10)
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Beyond Linear Dependence: Multivariate Regular Variation

To further relate

lim
t→∞

tPr
(

X
b(t)

∈ B
)

= µβ(B) (11)

to the spectral measure in the case of r.v. which satisfies X ∈ MVR(−β), first
choose the sets B according to:

B =

{
x ∈ [0,∞]d | ||x || > r ,

x
||x || ∈ G

}
for r > 0 and a Borel set G ∈ Sd−1

+,||·||.
By the definition of MVR one has the constant q (depending on β and norm
|| · ||) given by:

q(β, || · ||)r−βµ(G) = νβ

{
x ∈ [0,∞]d | ||x || > r ,

x
||x || ∈ G

}
(12)
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Beyond Linear Dependence: Multivariate Regular Variation

Then setting β = 1 and r = 1 one can express the spectral measure as

Γ||·||(G) = µ1

{
x ∈ [0,∞]d | ||x || > 1,

x
||x || ∈ G

}
(13)

which gives according to [Barbe et al, 2006] the constant function

q(β, || · ||) = µ1

{
x ∈ [0,∞]d | ||x1/β || > 1

}
(14)

With these relationships one has the following theorem from [Barbe et al,
2006]

Theorem: MVR and Spectral Measure Representation

Let the Rd
+ valued random vector X with i.i.d. marginals satisfy

X ∈ MVR(−β) with β > 0, then

q(β, || · ||) = lim
x→∞

Pr (||X || > x)

Pr(X1 > x)
=

∫
Sd−1

+,||·||

||x
1
β ||βΓ||·||(dx) (15)
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Fisheries Economics Example: SSM and Dependence

In practical time series and spatial modelling settings we need to consider
dependence structures which go beyond simple specification of linear

relationships.

How can we understand ’non-linear’ dependence structures spatially or
temporally ?

A MOTIVATING EXAMPLE FROM FISHERIES ECONOMICS:

CONTEXT: An important question in fisheries economics is to understand
how to set harvest quotas which depend on both economic forces related to
fish market price as well as ecological factors such as stock preservation!

Consider the challenge of setting the fisheries license harvest quotas for
multiple fish species collocated in a large lake system!

• Quota’s too large and each fish species will be affected/decline!
• Quota’s too low and fisheries lobby groups and industry pressure!

[Hossack, Peters and Ludsin, 2014] demonstrate that such economic
decisions as stock quota must be set with interspecific species, spatial
dependence and environmental factors taken into consideration!
(dependence)
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Fisheries Economics Example: SSM and Dependence

• X (s)
t - unobserved biomass or abundance ’stock size’ of species s at the

start of year t + 1;

• r (s) - species specific population growth rate parameter
• k (s) - species specific carrying capacity

Carrying Capacity
Carrying capacity of a biological species in an environment is the maximum
population size of the species that the environment can sustain indefinitely,
given the food, habitat, water and other necessities available in the
environment.

In population biology, carrying capacity is defined as the environment’s
maximal load, which is different from the concept of population equilibrium.
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Fisheries Economics Example: SSM and Dependence

 

• Stock dynamics and species interactions are never perfectly known-
creating process uncertainty

• Stocks are rarely directly observed without uncertainty from unknown
catchability, sampling error and measurement error.
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Fisheries Economics Example: SSM and Dependence

Observation model and Catch Per Unit Effort (CPUE):

The fishing process in a particular fishing ground involves the existence of
one or more fish populations in different stages of their life cycles, with a
particular behaviour according to natural or foreign challenges; their
abundance depends on biological and environmental conditions.
A typical observation equation in fisheries management assumes that CPUE
is proportional to stock size, such that in year t

ln I(s,f ,m)
t︸ ︷︷ ︸

Log CPUE

= ln X (s)
t︸ ︷︷ ︸

Log Stock

+ A(s,f ,m)
t︸ ︷︷ ︸

Catchability

+ w (s,f ,m)
t︸ ︷︷ ︸

obs. noise

(16)

• s - species of fish
• f - fishery type - gill net (g), recreational (r) or trap net (n)
• m - management unit i.e. region of lake

and A(s,f ,m)
t represents the time, space and species varying catchabilities.

The relationship between fish abundance and efficiency of fishing gear is
catchability⇒ Catachability measures interaction between the resource and
the predation effort.
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Fisheries Economics Example: SSM and Dependence

In more detail - the catchabilities have the following structure:

A(s,f ,m)
t ∼ N

([
a(s,f ) + β(s,f )

]
I, ν(s,f )R(ρ

(s,f )
a )

)
(17)

where

• log catchabilities for each management unit have marginal mean
structure

[
a(s,f ) + β(s,f )

]
; and

• β(s,f ) captures the influence of hypoxia in different management units per
species and per fishery type - created by environmental mortality forces
such as Soluable Reactive Phosphorus.

• variance
[
ν(s,f )

]2
shared within a fishery.

• The matrix R(ρ
(s,f )
a ) imposes a spatial correlation structure governed by

the correlation parameter ρ(s,f )
a between adjacent management units

within a fishery.

• Catchability is typically fishery specific and varies spatially (in our case
with a spatial covariance function) and temporally with a trending term.
• The log catchability can be reinterpreted as spatial random effects nested

within time.
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A(s,f ,m)
t ∼ N

([
a(s,f ) + β(s,f )

]
I, ν(s,f )R(ρ

(s,f )
a )

)
(17)

where
• log catchabilities for each management unit have marginal mean

structure
[
a(s,f ) + β(s,f )

]
; and

• β(s,f ) captures the influence of hypoxia in different management units per
species and per fishery type - created by environmental mortality forces
such as Soluable Reactive Phosphorus.

• variance
[
ν(s,f )

]2
shared within a fishery.

• The matrix R(ρ
(s,f )
a ) imposes a spatial correlation structure governed by

the correlation parameter ρ(s,f )
a between adjacent management units
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The Independent Latent Process SSM - for Stock sizes given CPUE’s
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Fisheries Economics Example: SSM and Dependence

A joint model of multiple species can have dependence introduced in a
number of places - for instance in process noise dependence.

Process noise dependence is relevant when the mechanism by which
species interact is unknown to ecologists or difficult to model explicitly due to
unknown knowledge of features such as:

• Trophic relationships - (i.e. local food web structures);
• Environmental conditions - lake temperature, salinity, apoxia levels; or
• Management interventions

Such features may jointly affect the recruitment or natural mortality of all the
relevant stocks or species - which can be better understood through
incorporation of dependence structures in the SSM.
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The SSM - for Stock sizes given CPUE’s
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The Copula Dependent SSM
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Some Results of Estimations
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Alternative Dependence Stuctures in SSM for Stock sizes given CPUE’s
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Example of relevant common factor:
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