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Spatial Point Processes

Definition (Poisson Point Process)

A PPP is defined using the following two properties:

The number of points in disjoint subsets is independent.

For any bounded subset, the number of points follows a
Poisson distribution.

Pr (N (Bi ) = ki , 1 ≤ i < n) =
∏

i

exp

(∫
Bi

λ(x)dx
)
(∫

Bi
λ (x) dx

)ki

ki !

For homogeneous PPP we have that
∫
Bi
λ (x) dx = λ ‖Bi‖ .
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Spatial Point Processes

Definition (Finite Binomial Point Process (FBPP) )

A Finite Binomial Point Process is defined by considering a fixed
number of n points at random locations in a bounded region
W ⊂ R

2. Define by X1, . . . ,Xn the i.i.d. the random locations
with the intensity of the number of points in a small region around
any location x defined to be λ (x). This produces a probability
density of each Xi given by

fX (x) =

{
1

λ(W ) , if x ∈ W ,

0, otherwise,

where λ(W ) denotes the area of W . Each random point Xi is
uniformly distributed in W so that for a bounded set B ∈ R

2 on
has the distribution

Pr (Xi ∈ B) =

∫

B

fX (x)dx =
λ(B ∩W )

λ(W )
.
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System Model

System Model:

sensor network for event detection
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System Model

A1 The terget is present (H1) or absent (H0). Under H1, the
target transmits constant power p0 and under H0, the target
does not transmit any power (p0 = 0).
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System Model

A1 The terget is present (H1) or absent (H0). Under H1, the
target transmits constant power p0 and under H0, the target
does not transmit any power (p0 = 0).

A2 The location of the target (if present) is assumed known
xs = [x0, y0].

A3 Sensors are deployed and their locations follow either a BPP
or a PPP deployment in a 2 dimensional circular region with
radius R . The spatial density of the sensors is given by
λ(x) = x−ν , ν 6= 0.

A4 The random unknown location of the k-th sensor
(k = {1, · · · ,N}) is Xk = [Xk ,Yk ].
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System Model

A5 The amount of energy the k-th sensors measures is inversely
proportional to the Euclidean distance between the target and

the sensor and is given by
√
p0R

−α/2
k . The random variable

Rk represents the random distance between the k-th sensor
and the target.
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System Model

A5 The amount of energy the k-th sensors measures is inversely
proportional to the Euclidean distance between the target and

the sensor and is given by
√
p0R

−α/2
k . The random variable

Rk represents the random distance between the k-th sensor
and the target.

A6 Each senors transmits its observation over perfect channels to
the gateway (GW) via a shared medium. The observed signal
at the GW in the l-th time slot (l = {1, · · · , L}) is a linear
combination of all the signals given by:





H0 : Yl = Wl

H1 : Yl =

N∑

k=1

√
p0Rk

−α/2 +Wl ,

where Wl is the i.i.d additive Gaussian noise N (0, σ2
Wl

). The
parameter α is the path-loss coefficient.
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The problem

Is or isn’t there a target at x0?
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Practical scenario: volcano activity monitoring

Null hypothesis:

go hiking
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Practical scenario: volcano activity monitoring

Null hypothesis:

go hiking

Alternative hypothesis:

Run away!
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Problem statement

Problem statement:

the optimal detector
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Problem statement

The optimal decision rule is a threshold test based on the
likelihood ratio given by:

Λ (Y1:L) ,
p(Y1:L|xs ,H0)

p (Y1:L|xs ,H1)

H0

≷
H1

γ,

where the threshold γ can be set to assure a fixed system
false-alarm rate under the Neyman-Pearson approach or can be
chosen to minimize the overall probability of error under the
Bayesian approach. We can decompose the full marginals under
each hypothesis, p (Y1:L|xs ,Hk), k = 0, 1, as

p(Y1:L|xs ,Hk) =
L∏

l=1

p(Yl |xs ,Hk).
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Solution

Deriving the marginal likelihoods
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Solution

The easy part: marginal likelihood under the Null

H0 : Yl = Wl

The marginal likeloihood:

H0 : p(Y1:L|xs ,H0) =

L∏

l=1

N (Yl ; 0, σ
2
W )
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
N∑

k=1

√
p0Rk

−α/2 +Wl .

The marginal likelihood:

H1 : p(Y1:L|xs ,H1) = ?
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
N∑

k=1

√
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−α/2 +Wl .
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
N∑

k=1

√
p0Rk

−α/2 +Wl .

The marginal likelihood:

H1 : p(Y1:L|xs ,H1) = ?

We need to:

1 Find the random distance density p (Rk) from the target to
k-th sensor.
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
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√
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
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√
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Solution

The difficult part: marginal likelihood under the Alternative

H1 : Yl =
N∑

k=1

√
p0Rk

−α/2 +Wl .

The marginal likelihood:

H1 : p(Y1:L|xs ,H1) = ?

We need to:

1 Find the random distance density p (Rk) from the target to
k-th sensor.

2 Find the density p
(
R
−α/2
k

)
.

3 Solve the N-fold convolution.

4 Solve the convolution with Wl .
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Solution

Step 1: target to k-th sensor random

distance density
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Step 1: target to k-th sensor random distance density

Theorem

The density of the Euclidean distance between the k-th sensor and

the target, Rk is:

1 BPP deployment:

fRk
(r|xs ,H1) =

(2 − ν) Γ
(
k + 1−ν

2−ν

)
Γ (NB + 1)

R Γ (k) Γ
(
NB + 1−ν

2−ν
+ 1
) β

((
r

R

)2−ν

; k +
1 − ν

2 − ν
,NB − k + 1

)
.

2 PPP deployment:

fRk
(r|xs , n = NP ,H1) =

(2π)k

Γ (k) (2 − ν)k−1
r
(2−ν)k−1

exp

(
−

2πr2−ν

2 − ν

)
,

where β (x , α, β) := 1
B(α,β)x

α−1 (1− x)β−1
is the β distribution

and Γ (n) := (n − 1)! is the Gamma function.
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Solution

Step 2: transformed distance density

p
(
R
−α/2
k

)
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Step 2: transformed distance density p
(
R

−α/2
k

)

Lemma

The density fZk
(z |xs ,H1) = fZk

(
r−α/2|xs ,H1

)
is given by:

1 BPP deployment:

fZk
(z|xs ,H1) =

2 (2− ν)

αR

Γ
(
k + 1−ν

2−ν

)
Γ (NB + 1)

Γ (k) Γ
(
NB + 1−ν

2−ν
+ 1
)

× β



(
z−2/α

R

)2−ν

; k +
1− ν

2− ν
,NB − k + 1


 z−2/α−1

2 PPP deployment:

fZk
(z|xs , n = NP ,H1) =

(2π)k

Γ (k) (2− ν)k−1

(
2

α

)
z−2/α((2−ν)k)−1

× exp

(
−

2π

2− ν
z−2/α(2−ν)

)
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Solution

Step 3: N-fold convolution
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Step 3: N-fold convolution of p
(
R

−α/2
k

)

We need to derive the density of

Ni∑

k=1

√
P0Zk

We express this random sum of Y as an N-fold convolution of
Zk , k ∈ {1, . . . ,N}, given by

fY (y) = ∗Ni

i=1fZi
(y) =

∫ ∞

−∞
fZNi−1

(y − w)fZNi
(w)dw ,

where ∗ represents the convolution symbol.

Each of these convolution integrals is intractable and cannot
be solved analytically in closed form.
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Alternative solution

Probability Density Approximation

via Series Expansion Methods
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Probability Density Approximation via Series Expansion

Methods

1 We approximate the marginal likelihood via three different series
expansion methods using orthogonal basis functions. These series
expansions are based on a kernel density multiplied by polynomials,
known as Askey polynomials:

f (y) = g (y)


1 +

∞∑

j=1

djHj (y)


 ,

where g (y) is the kernel, dj is the j-th weight and Hj (y) is the j-th
order basis function.
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Methods

1 We approximate the marginal likelihood via three different series
expansion methods using orthogonal basis functions. These series
expansions are based on a kernel density multiplied by polynomials,
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1 +
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djHj (y)


 ,

where g (y) is the kernel, dj is the j-th weight and Hj (y) is the j-th
order basis function.

2 Typical Kernel densities and polynomials:

Gaussian density basis and Hermite polynomials.
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Probability Density Approximation via Series Expansion

Methods

1 We approximate the marginal likelihood via three different series
expansion methods using orthogonal basis functions. These series
expansions are based on a kernel density multiplied by polynomials,
known as Askey polynomials:

f (y) = g (y)


1 +

∞∑

j=1

djHj (y)


 ,

where g (y) is the kernel, dj is the j-th weight and Hj (y) is the j-th
order basis function.

2 Typical Kernel densities and polynomials:

Gaussian density basis and Hermite polynomials.
Gamma density basis and Laguerre polynomials.
Beta density basis and Jacobi polynomials.

3 Properties of orthogonality between density functions and
polynomials guarantee the integration of density to equal to one.
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Some bad news

1 These expansions do not ensure positivity of the density at all
points (it can be negative for particular choices of Skew and
Kurtosis).
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Some bad news

1 These expansions do not ensure positivity of the density at all
points (it can be negative for particular choices of Skew and
Kurtosis).

2 It is important to characterize these values that produce the
”envelope” for the density approximation in which it will
remain positive. This characterization can be carried out by
finding the appropriate regions in the Skew-Kurtosis plane
(S-K plane) which generate positive support.
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Gram-Charlier Series Expansion

Gram-Charlier Series Expansion
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Gram-Charlier Series Expansion

The Gram-Charlier series expansion utilises a Gaussian kernel,
g (y), and Hermite polynomials, Hs (x), as basis function. These
polynomials are defined in terms of the derivatives of the normal
density, g (y) as follows:

dsg (y)

dsy
= (−1)s Hs (y) g (y) .

The Gram-Charlier series expansion is given by:

fY (y) =
1√
2πκ2

exp

(
−(y − κ1)

2

2κ22

) ∞∑

r=1

κr
r !

−dr (g (y))

dry
,

where κr is the r -th cumulant of Y .
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Gram-Charlier Series Expansion

Lemma (Gram-Charlier A Series Expansion:)

The fourth order approximation of a probability distribution, fY (y),
via the Gram-Charlier A series is given by

fY (y) ≈
1√
2πκ2

exp

(
−(y − κ1)

2

2κ22

)

×
(
1 +

κ3
6κ23

H3

(
y − κ1
κ2

)
+

κ4
24κ24

H4

(
y − κ1
κ2

))
,

where H3(y) = y3 − 3y and H4(y) = y4 − 6y2 + 3 are the Hermite

polynomials, and κ1, κ2, κ3, κ4 are the first, second, third and

fourth cumulants of Y .
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Gamma-Laguerre Series Expansion

Gamma-Laguerre Series Expansion
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Gamma-Laguerre Series Expansion

The Gamma-Laguerre series expansion utilises the orthogonality
between the Gamma density kernel and the Laguerre polynomials:

L
(α)
n (x) = (−1)n x1−a exp (−x)

dn

dxn

(
xn+a−1 exp (−x)

)
.

The first five orthonormal polynomial basis are given by:

L
(a)
0 (x) = 1

L
(a)
1 (x) = x − a

L
(a)
2 (x) = x

2
− 2 (a+ 1) x + (a + 1) a

L
(a)
3 (x) = x

3
− 3 (a+ 2) x2 + 3 (a+ 2) (a + 1) x − (a+ 2) (a + 1) a

L
(a)
4 (x) = x

4
− 4 (a+ 3) x3 + 6 (a+ 3) (a + 2) x2

− 4 (a + 3) (a+ 2) (a + 1) x

+ (a + 3) (a+ 2) (a + 1) a
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Gamma-Laguerre Series Expansion

Instead of directly working with y , we first rescale it to a R.V. ỹ by

ỹ = by , where b = E[y ]
Var[y ] and set a = E[y ]2

Var[y ] . Denoting the density

of ỹ as fỹ , we express fỹ as follows:

fỹ (ỹ) = g (ỹ ; a)
∞∑

n=1

AnL
(a)
n (ỹ) ,

where the kernel is the Gamma density, ie. g (ỹ ; a) = ỹa−1 exp−ỹ

Γ(a) ,

with shape = a and scale = 1.

A0 = 1

A1 = 0

A2 = 0

A3 =
Γ (a)

3!Γ(a + 3)
(µ3 − 2a)

A4 =
Γ (a)

4!Γ(a + 4)
(µ4 − 12µ3 − 3a2 + 18a),

where µn = E [(X − E [X ])n] .
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Beta-Jacobi Series Expansion

Beta-Jacobi Series Expansion
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Beta-Jacobi Series Expansion

This new expansion is relevant for cases where Y has a bounded
support [a, b]. To achieve this, we construct the series based on a
Beta kernel and the Jacobi polynomials. It is important to note
that the Jacobi polynomials are only orthogonal on [−1, 1]. Hence,
we need to transform Y so that it has also has support [−1, 1] .
This is achieved via the transformation X = 2

b−a

(
Y − a+b

2

)
.

The Beta-Jacobi series expansion is given by:

fX (x) =
(x + 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1

d∑

i=0

aiP
(η−1,θ−1)
i (x) ,

where the coefficients, ai , and the Jacobi polynomials,

P
(η−1,θ−1)
i (x), are given by:

ai =

i∑

j=0

E

[
X

j
]B (θ, η) (2i + θ + η − 1) i!

Γ (i + θ)

i∑

m=j

Γ (η + θ + i + m − 1)

Γ (i − m + 1) Γ (η + m)m!2m

(
m

j

)
(−1)

m−j

P
(η−1,θ−1)
i

(x) =
Γ (η + i)

Γ (η + θ + i − 1)

i∑

m=0

Γ (η + θ + i + m − 1)

Γ (i − m + 1) Γ (η + m + 1)m!

(
x − 1

2

)m

.
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Calculating the moments & cumulants

Calculating the moments &

cumulants
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Calculating the moments & cumulants

Lemma

The m-th moment of Zk is given by:

1 BPP deployment:

E [Zm
k ] =




R−mα/2

Γ(NB+1)Γ
(
k− mα

2(2−ν)

)

Γ(k)Γ
(
NB−

mα
2(2−ν)

+1
) , k − mα

2(2−ν) /∈ Z≤0

∞, otherwise

2 PPP deployment:

E [Zm
k ] =





(
ν+2
2π

)− αm
2(ν+2)

Γ
(
k− αm

2(ν+2)

)

Γ(k) , k − αm
2(ν+2) /∈ Z≤0

∞, otherwise
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Series expansions positive support

Positive support analysis
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Series expansions positive support

1 We developed three types of series expansions to approximate
the marginal likelihood under the alternative hypothesis.
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Series expansions positive support

1 We developed three types of series expansions to approximate
the marginal likelihood under the alternative hypothesis.

2 How can we tell if our series expansion yields positive support?
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Series expansions positive support

1 We developed three types of series expansions to approximate
the marginal likelihood under the alternative hypothesis.

2 How can we tell if our series expansion yields positive support?

3 This characterization can be carried out by finding the
appropriate regions in the Skew-Kurtosis plane (S-K plane)
which generate positive support.
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Gram-Charlier Series Expansion

The fourth order approximation of a probability distribution, f
Ỹ
(ỹ),

via the Gram-Charlier A series is given by

f
Ỹ
(ỹ) =

1√
2π

exp

(
− ỹ2

2

)(
1 +

s

6
H3 (ỹ) +

κ4
24

H4 (ỹ)
)
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Gram-Charlier Series Expansion

The fourth order approximation of a probability distribution, f
Ỹ
(ỹ),

via the Gram-Charlier A series is given by

f
Ỹ
(ỹ) =

1√
2π

exp

(
− ỹ2

2

)(
1 +

s

6
H3 (ỹ) +

κ4
24

H4 (ỹ)
)

For f
Ỹ
(ỹ) to be positive for every Ỹ :

1 +
s

6
H3 (ỹ) +

κ4
24

H4 (ỹ) ≥ 0
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Gram-Charlier Series Expansion

The fourth order approximation of a probability distribution, f
Ỹ
(ỹ),

via the Gram-Charlier A series is given by

f
Ỹ
(ỹ) =

1√
2π

exp

(
− ỹ2

2

)(
1 +

s

6
H3 (ỹ) +

κ4
24

H4 (ỹ)
)

For f
Ỹ
(ỹ) to be positive for every Ỹ :

1 +
s

6
H3 (ỹ) +

κ4
24

H4 (ỹ) ≥ 0

Using notions of analytical geometry, Jondeau Et. al. obtained
the following boundary conditions.
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Gram-Charlier Series Expansion

Lemma (Positive density conditions :)

The Gram-Charlier A series expansion yields positive values for the

density fY (y) only if:

{
s (ỹ) = −24H3(ỹ)

d(ỹ) ,

k (ỹ) = 72H2(ỹ)
d(ỹ) ,

where Ỹ = Y−κ1
κ2

and d (ỹ) = 4H2
3 (ỹ)− 3H2 (ỹ)H4 (ỹ)
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Gamma-Laguerre Series Expansion

Lemma (Positive density conditions:)

The Gamma-Laguerre series expansion yields positive values for the
density fX (x) if:

{

k(x) = (
B′

1B3

B1
− B ′

3)(B
′
2 −

B′

1B2

B1
)−1

s(x) = −
1
B1
(µ4(x)B2 + B3)

, for x ∈ [0,+∞)

where B1, B2, B3 are given by:

B1 (x) =
xa−1 exp(−x)

Γ (a)

(

Γ (a)

3!Γ(a + 3)
L
(a)
3 (x)− 12

Γ (a)

4!Γ(a + 4)
L
(a)
4 (x)

)

,

B2 (x) =
xa−1 exp(−x)

Γ (a)

Γ (a)

4!Γ(a + 4)
L
(a)
4 (x),

B3 (x) =
xa−1 exp(−x)

Γ (a)

(

1− 2a
Γ (a)

3!Γ(a + 3)
L
(a)
3 (x) + (−3a2 + 18a)

Γ (a)

4!Γ(a + 4)
L
(a)
4 (x)

)

.
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Beta-Jacobi Series Expansion

Theorem (Positive density conditions:)

The Beta-Jacobi series expansion yields positive values for the density fX (x) if:

{

k (x) = (
B′

1B3

B1
− B ′

3)(B
′
2 −

B′

1B2

B1
)−1

s (x) = −
1
B1
(µ4(x)B2 + B3)

, for x ∈ [−1,+1)

where

B1 = (C33P3 + C43P4)
(x + 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1
,

B2 = C44P4
(x + 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1
,

B3 =
(x + 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1

(

2
∑

i=0

aiPi + (C30 + C31µ1 + C32µ2)P3 + (C40 + C41µ1 + C

Cij =
B (θ, η) (2i + θ + η − 1) i !

Γ (i + θ)

i
∑

m=j

Γ (η + θ + i +m − 1)

Γ (i −m + 1) Γ (η +m)m!2m

(

m

j

)

(−1)m−j
,

and µ1 = E [X ] , µ2 = E
[

X 2
]

.
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Simulations
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Gram-Charlier series expansion
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Receiver Operational Characeristics
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Receiver Operational Characeristics
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Conclusions

1 Addressed the problem of event detection in sensor networks
with random deployments.

2 Developed three different analytic approximations via series
expansions of the marginal likelihood.

3 Analysed the regions of positive suuport under each expansion.
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Questions?

Thanks very much!

Questions?
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