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Aim of this presentation

Find models that have geometric properties which are in line with the stylized facts of real
world networks such as financial networks and social networks.

Source: (lhs) Brazilian interbank network, Cont et al. (2010); (rhs) Facebook network, griffsgraphs.com.
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Graph constructions (1/2)
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Particles x, y ∈ Rd are connected at random with given edge probabilities px,y.

Questions: Choice of particles? Choice of edges?

3



Graph constructions (2/2)
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Edge probabilities px,y on (lhs) are smaller than the ones on (rhs).
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Degree distribution

Degree D(x) denotes the number of particles that share a direct edge with x
(direct neighbors of x in the network).
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• green: particle x1 ∈ Rd that has a
low degree D(x1).

• red: particle x2 ∈ Rd that has a high
degree D(x2). Such particles play the
role of hubs in the network.
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Graph distance

d(x, y) = minimal number of edges that link particles x and y.
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Connected components
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The connected component C(x) is the set of particles that can be reached from x within
the network, i.e.

C(x) = {y; x and y are connected by a finite path of edges}.

� C(x) is also called cluster of particle x.
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Stylized facts about many real world networks

• Small-world effect: Any two particles are connected by very few edges.
Six Degrees by Watts (2003) was inspired by the statement of his father saying that
“he is only 6 handshakes away from the president of the US”.

• Clustering property: Connected particles tend to share common friends.

• Power law of degrees: The number of direct edges D(x) of a particle x is heavy-
tailed, i.e.

P[D(x) > k] ∼ ck−τ as k →∞,
with tail parameter τ ∈ (1, 2) (finite mean and infinite variance).

? number of oriented links on web pages: τ ≈ 1.5
? routers for e-mails and files: τ ≈ 1.2
? movie actor network: τ ≈ 1.3
? citation network Physical Review D: τ ≈ 1.9

Source: Section 1.4 in Durrett (2007) and Newman et al. (2002).
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Erdös-Rényi (ER) random graph (1959)

• Choose set of n particles Vn = {1, . . . , n}.

• Fix edge probability p ∈ (0, 1).

• Attach to x 6= y ∈ Vn independently an edge

ηx,y = ηy,x =


1 with p,
0 with 1− p.

ηx,y = 1 means that there is an edge between
x and y, i.e. x and y are adjacent.

ER graph with n = 12.

� This random graph model is usually denoted by ER(n, p).

� We consider the ER graph for large n, i.e. big sets Vn, and small p = pn.

11



Degree distribution of ER graph

• D(x) = |{y ∈ Vn; ηx,y = 1}| degree of x.

• The degree D(x) fulfills for k < n

P [D(x) = k] =
n− 1

k

 pk (1− p)n−1−k .

• For p = pn = ϑ/n > 0 we obtain

P [D(x) = k] n→∞−→ e−ϑ
ϑk

k!
,

i.e. asymptotic Poisson(ϑ) distribution.

� No heavy-tailed degrees D(x).

ER graph with n = 12.

12



Phase transition of ER graph at ϑ = 1

• For p = pn = ϑ/n > 0 we obtain

P [D(x) = k] n→∞−→ e−ϑ
ϑk

k!
.

• ϑ < 1: connected components are of maximal
order O(log n), as n→∞, i.e. are small.

• ϑ > 1: largest connected component is of order
O(n), as n→∞, all others are small.

• ER graph has very few complex components.

� ER graph does not fulfill stylized facts.

ER graph with n = 12.

Source: Bollobás (2001) and Chapter 2 in Durrett (2007). Phase transition is closely related to branching processes.
13
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Newman-Strogatz-Watts (NSW) graph (2001)

• Choose set of n particles Vn = {1, . . . , n}.

• Directly choose degree distribution for x ∈ Vn

gk = P [D(x) = k] ∼ ck−(τ+1) as k →∞,

for fixed tail parameter τ > 0.

• Note that we have the following 3 regimes:

? τ < 1: degree D(x) has infinite mean;
? 1 < τ < 2: degree D(x) has finite mean

and infinite variance;
? τ > 2: degree D(x) has finite variance.

� These 3 regimes for τ will play a crucial role.

NSW graph with n = 12.
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Construction of NSW graph

• Directly choose degrees D(x) according to

gk = P [D(x) = k] ∼ ck−(τ+1) as k →∞.

• Molloy-Reed (1995) algorithm: Attach to each
particle x ∈ Vn exactly D(x) ends of edges and
connect them randomly in pairs.

• Molloy-Reed algorithm may provide multiple
edges and self-loops.

• For finite variance τ > 2 there are only a
few multiple edges and self-loops, as n → ∞.
They are described by Poisson distributions, see
Theorem 3.1.2 in Durrett (2007).

NSW graph with n = 12.
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Phase transition of NSW graph at ϑ = 1

For τ > 1 we define µ = E[D(x)] <∞ and

ϑ = µ−1 ∑
k≥1

(k − 1)kgk.

• τ > 2 and ϑ > 1: the largest connected
component is of order O(n), as n → ∞, all
others are small of order O(log n).

• τ > 2 and ϑ < 1: connected components are
conjectured to be of orderO(n1/τ), as n→∞.

• 1 < τ < 2: we have ϑ = ∞ and the largest
connected component is of order O(n).

NSW graph with n = 12.

Source: Chapter 3 in Durrett (2007).
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Graph distance in NSW graphs

• Graph distance between two particles x and y

d(x, y) = minimal number of edges
connecting x and y.

The latter is infinite if x and y are not in the
same connected component.

• Van der Hofstad et al. (2007) show that d(x, y)
behaves for n→∞ as

O(log log n) for 1 < τ < 2,
O(log n) for τ > 2.

� This is a small-world effect.

NSW graph with n = 12.

In fact, the statement in Van der Hofstad et al. (2007) is much more involved.
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Conclusions on the NSW graph

• NSW graphs have:

? heavy tails, power law behavior by
construction with tail parameter τ > 0;

? small-world effect, graph distance d(x, y) is
of low order as n→∞;

? the clustering property and geometric
properties are difficult to judge (for τ > 2
we have “local sparsity”).

• Aim: introduce other classes of (random)
graphs that possess a natural distance function
additionally to the graph topology.

• This leads to long-range percolation models in
Zd and Rd.

NSW graph with n = 12.
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Nearest-neighbor bond percolation in Zd

• Denote by ‖ · ‖ the Euclidean distance.

• x, y ∈ Zd nearest neighbors if ‖x− y‖ = 1.

• Fix edge probability p ∈ [0, 1].

• Attach to x 6= y ∈ Zd independently an edge

ηx,y = ηy,x =


1{‖x−y‖=1} with p,
0 with 1− p.

ηx,y = 1 means that there is an edge between
x and y, i.e. x and y are adjacent.

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

nearest-neighbor bond percolation

Source: Broadbent-Hammersley (1957), Kesten (1982), Grimmett (1997, 1999).
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Properties: nearest-neighbor bond percolation

Properties of nearest-neighbor bond percolation:

• Degree D(x) ≤ 2d is bounded, and hence not
heavy-tailed.

• d(x, y) ≥ ‖x− y‖, no small-world effect.

• But nearest-neighbor bond percolation in Zd
serves as introduction and is important for
many proofs in long-range percolation.

• Connected component C(x) of x ∈ Zd:

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

nearest-neighbor bond percolation

C(x) = {y ∈ Zd; x and y are connected by a finite path of nearest-neighbor edges}.
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Percolation and critical probability

• Define the percolation probability

θ(p) = P [|C(x)| =∞] .

θ(p) is non-decreasing.

• Define the critical probability pc = pc(Zd) by

pc = inf {p ∈ (0, 1]; θ(p) > 0} .

• First consequences:

? pc(Zd+1) ≤ pc(Zd), because one can embed Zd into Zd+1.

? For p > pc we have θ(p) > 0 and x ∈ Zd belongs to an
infinite connected component C(x) with positive probability.

23



Critical probability for d = 2

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

Nearest-neighbor bond percolation in dimension d = 2: pc = pc(Z2) = 1/2.

(lhs) p < pc; (rhs) p > pc.

Source: Duality argument of Kesten.
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Phase transition picture

Critical probability
pc = pc(Zd) = inf {p ∈ (0, 1]; θ(p) > 0} .

Theorem 1. For nearest-neighbor bond percolation in Zd we have
• d = 1: pc(Z) = 1; and
• d ≥ 2: pc(Zd) ∈ (0, 1).

Denote by I the number of infinite connected components.

Theorem 2. For any p ∈ (0, 1) either P[I = 0] = 1 or P[I = 1] = 1.

=⇒ For p > pc(Zd) there exists a unique infinite connected component C∞, a.s.

Conclusion. Nearest-neighbor bond percolation does not share the stylized facts.
25
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Homogeneous long-range percolation in Zd

• Fix edge probabilities

px,y =

p if ‖x− y‖ = 1,
1− e−λ‖x−y‖−α if ‖x− y‖ > 1,

for given p ∈ [0, 1], α > 0 and λ > 0.

• Attach to x 6= y ∈ Zd independently an edge

ηx,y = ηy,x =


1 with px,y,
0 with 1− px,y.

� px,y ∼ λ‖x− y‖−α as ‖x− y‖ → ∞.

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
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homogeneous long-range percolation

Source: Schulman (1983), Newman-Schulman (1986), Gandolfi et al. (1992), Berger (2002, 2008), Benjamini et al. (2004),
Biskup (2004), Trapman (2010).
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Degrees for long-range percolation model

D(x) = |{y ∈ Zd : ηx,y = 1}|.

Theorem 3. For homogeneous long-range percolation on Zd we have

• α ≤ d: D(x) = ∞ and the infinite connected component C∞ contains all particles
z ∈ Zd, a.s.;

• α > d: D(x) behaves as a Poisson distribution, in particular, is light-tailed.

The second statement follows from thinning the lattice Zd by non-adjacent particles
leading to considerations of inhomogeneous Poisson point processes in Rd.
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Percolation picture and phase transitions

C(x) = {y ∈ Zd; x and y are connected by a finite path of edges}.

Theorem 4. For homogeneous long-range percolation on Zd we have, a.s.,

• α ≤ d: there is an infinite connected component;

• α > d and d ≥ 2: for p sufficiently close to 1 there is an infinite connected component;

• α > d and d = 1:

? 1 < α < 2: for p sufficiently close to 1 there is an infinite connected component;
? α > 2: there is no infinite connected component.

The case d = 1 and α = 2 is also solved and percolation depends on the choice of λ > 0. Recall:

px,y = p · 1{‖x−y‖=1} +
(
1− e−λ‖x−y‖

−α)
· 1{‖x−y‖>1}.
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Graph distances in long-range percolation

d(x, y) = minimal number of edges that connect x and y.

Theorem 5. For homogeneous long-range percolation on Zd we have
• α < d: the graph distance is bounded, a.s., by

dd/(d− α)e ;

• d < α < 2d: assume, a.s., that there exists a unique infinite connected component C∞.
For all ε > 0 we have, set ∆−1 = log2(2d/α),

lim
‖x‖→∞

P
∆− ε ≤ log d(0, x)

log log ‖x‖
≤ ∆ + ε

∣∣∣∣∣∣∣∣ 0, x ∈ C∞
 = 1;

• α > 2d: we have, a.s.,
lim inf
‖x‖→∞

d(0, x)
‖x‖

> 0.
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Homogeneous long-range percolation in Zd

For px,y ∼ λ‖x− y‖−α as ‖x− y‖ → ∞:

• α ≤ d: C∞ contains all particles of Zd, degrees
are infinite, graph distances are bounded, a.s.;

• d < α < 2d: degrees D(x) are light-tailed,
local clustering, small-world effect;

• α > 2d: behaves as nearest-neighbor bond
percolation on Zd.

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

homogeneous long-range percolation

Conclusion. The homogeneous long-range percolation model in Zd shares many good
properties for d < α < 2d, except of the heavy-tailedness of the degree distribution.
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Heterogeneous long-range percolation in Zd

• (Wx)x∈Zd are i.i.d. Pareto(1, β) with β > 0,

P[Wx > w] = w−β, for w ≥ 1.

• For fixed α, λ > 0 and given (Wx)x∈Zd set

px,y = 1− e−λWxWy‖x−y‖−α.

• Choose independently edges for x 6= y ∈ Zd

ηx,y = ηy,x =


1 with px,y,
0 with 1− px,y.

� px,y ≈ λWxWy‖x− y‖−α.
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heterogeneous long-range percolation

Source: Deijfen et al. (2013).
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Degrees for heterogeneous long-range percolation

Theorem 6. For heterogeneous long-range percolation on Zd we have

• min{α, βα} ≤ d: D(x) =∞, a.s.;

• min{α, βα} > d: set τ = βα/d > 1. Then

P [D(x) > k] = k−τ`(k) as k →∞,

for some function `(·) that is slowly varying at infinity.

=⇒ The second statement provides heavy-tailedness of degrees! Compare to Theorem 3.

• τ < 2: infinite variance of degrees D(x).

• τ > 2: finite variance of degrees D(x).
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Percolation picture and phase transitions
Fix α, β > 0. Define critical constant

λc = inf {λ > 0; P [|C(x)| =∞] > 0} .

Theorem 7. Fix d ≥ 1 and assume min{α, βα} > d. This implies τ > 1.

• Upper bounds:

? d ≥ 2: λc <∞;
? d = 1 and α ∈ (1, 2]: λc <∞;
? d = 1 and min{α, βα} > 2: λc =∞.

• Lower bounds:

? τ = βα/d < 2 (infinite variance): λc = 0;
? τ = βα/d > 2 (finite variance): λc > 0.

This is similar to Theorem 4 of homogeneous long-range percolation.
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Phase transition picture

d

β

α

τ = βα/d = 2
finite variance degreeinfinite variance degree

λ
c
= 0

λ
c
∈ (0,∞)

1

2

β

α

τ = βα = 2
finite variance degreeinfinite variance degree

λ
c
= 0

λ
c
∈ (0,∞)

λ
c
= ∞

(lhs) phase transition for d ≥ 2; (rhs) phase transition for d = 1.
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Graph distances in heterogeneous model (1/2)

Theorem 8. We have for min{α, βα} > d:
• 1 < τ < 2 (infinite variance): for λ > λc = 0

lim
‖x‖→∞

P
η1 ≤

d(0, x)
log log ‖x‖

≤ η2

∣∣∣∣∣∣∣∣ 0, x ∈ C∞
 = 1;

• d < α < 2d and τ > 2 (finite variance): for λ > λc ∈ (0,∞)

lim
‖x‖→∞

P
η3 ≤

log d(0, x)
log log ‖x‖

≤ η4

∣∣∣∣∣∣∣∣ 0, x ∈ C∞
 = 1;

• α > 2d and τ > 2 (finite variance):

lim
‖x‖→∞

P
η5 ≤

d(0, x)
‖x‖

 = 1.

• Statements ≤ are not rigorously proved.

• Compare to Theorem 5: Case 1 < τ < 2 is new!
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Graph distances in heterogeneous model (2/2)

λ
c
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λ
c
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λ
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d ≥ 2 : λ
c
∈ (0,∞)

d = 1 : λ
c
= ∞

d

2d

β

α

τ = βα/d = 1

τ = βα/d = 2
finite variance degreeinfinite variance degree

d(0, x) ∼ ‖x‖

d(0, x) ∼ (log ‖x‖)∆

d
(0
,x
)
∼

lo
g
lo
g
‖
x
‖

Case 1 < τ = βα/d < 2 (infinite variance of degrees) is new compared to homogeneous
long-range percolation. This provides small-world effect of order log log ‖x‖.
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Heterogeneous long-range percolation in Zd

For px,y ≈ λWxWy‖x− y‖−α:

• min{α, βα} ≤ d: degree D(x) is infinite, a.s.

• min{α, βα} > d: degree D(x) has power law
with parameter τ = βα/d > 1.

• d < min{α, βα} < 2d: small-world effect and
local clustering.

• min{α, βα} > 2d: conjectured to be as
nearest-neighbor bond percolation.
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heterogeneous long-range percolation

Conclusions. The heterogeneous long-range percolation model in Zd shares the stylized
facts for d < min{α, βα} < 2d, in particular, 1 < τ = βα/d < 2 is attractive for real
world modeling.
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Continuum space long-range percolation in Rd

• Particles X ⊂ Rd come from a homogeneous
Poisson cloud in Rd.

• (Wx)x∈X are i.i.d. Pareto(1, β) marks of X .

• For fixed α, λ > 0 and given X and (Wx)x∈X :

px,y = 1− e−λWxWy‖x−y‖−α.

• Choose independently edges for x 6= y ∈ X

ηx,y = ηy,x =


1 with px,y,
0 with 1− px,y.
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continuum space model
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Continuum space long-range percolation in Rd

Statements and conjectures:

• min{α, βα} ≤ d: degree D(x) is infinite, a.s.

• min{α, βα} > d: degree D(x) has power law
with parameter τ = βα/d > 1.

• d < min{α, βα} < 2d: small-world effect and
local clustering.

• min{α, βα} > 2d: conjectured to be as
nearest-neighbor bond percolation.
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continuum space model

Conjecture. The continuum space long-range percolation model in Rd shares the
stylized facts for d < min{α, βα} < 2d, in particular, 1 < τ = βα/d < 2 is attractive for
real world modeling.

Statements about degrees D(x) are proved in Deprez-W. (2013).
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Proofs are based on renormalization (1/3)
Define generations of boxes:

• Choose an integer valued sequence
(an)n∈N0 with an > 1.

• Define box lengths (mn)n∈N0 by

mn = anmn−1 =
n∏
i=0

ai.

• Choose v ∈ Zd. Box Bn,v of generation n
is defined by

Bn,v = mnv + [0,mn − 1]d.

m
n−2

m
n

m
n−1

box generation n for an ≡ 2

� Every box Bn,v of generation n contains adn children Bn−1,w of generation n− 1.
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Proofs are based on renormalization (2/3)

Recursive algorithm for good boxes:

Choose densities (κn)n∈N0 with κn ∈ (0, 1).

• Generation 0 box is good if it contains a
connected component of size κ0a

d
0.

• Generation n box is good if

? it contains at least κna
d
n good

generation n− 1 boxes; and
? all good generation n − 1 boxes are

attached by a direct edge.

m
n−2

m
n

m
n−1

good generation n boxes Bn,v

� The previous algorithm builds up recursively good boxes Bn,v of generation n which are
linked through generation n + 1 of good boxes Bn+1,w.
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Proofs are based on renormalization (3/3)
Recursive algorithm for good boxes:

• Generation 0 box is good if it contains a
connected component of size κ0a

d
0.

• Generation n box is good if

? it contains at least κna
d
n good

generation n− 1 boxes; and
? all good generation n − 1 boxes are

attached by a direct edge.

m
n−2

m
n

m
n−1

good generation n boxes Bn,v

Assume we arrive at a generation n of boxes Bn,v such that

(1) P[box Bn,v is good] > p∗,

(2) P[boxes Bn,v and Bn,w are attached] > 1− e−λ∗‖v−w‖−α,

where we have site-bond percolation for p∗ and λ∗. Then, we obtain an infinite cluster of
good boxes and hence the original model also percolates (through the attachedness). 2
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