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Bayesian Inference

Likelihood function pg (y) where § € ® C RY.
Prior distribution of density p (0) .

Bayesian inference relies on the posterior

_ __ pey)p(9)
m(0)=p(0ly)= f@p;(y)p(g/) do’

For non-trivial models, inference relies typically on MCMC.
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Metropolis-Hastings algorithm

At iteration |

e Sample ¢ ~ q (| ®i-1).

@ With probability

(@) q(8ia[8) . pe(¥)P(9) q(9i-]9)
T (0i-1) q (9 0i—1) po, . (v)p(Pi-1) q (9] 0i-1)’

set ¥; = 8, otherwise set ¥; = &,_1.

1A
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Metropolis-Hastings algorithm

At iteration |

e Sample ¢ ~ q (| ®i-1).

@ With probability

(@) q(8ia[8) . pe(¥)P(9) q(9i-]9)
T (0i-1) q (9 0i—1) po, . (v)p(Pi-1) q (9] 0i-1)’

set ¥; = 8, otherwise set ¥; = &,_1.

1A

e Problem: Metropolis-Hastings (MH) cannot be implemented if
ps () cannot be evaluated.
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Intractable Likelihood Function

@ For latent variable models, one has

po(y) = /Pe (x,y)dx

where the integral cannot often be evaluated.
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Intractable Likelihood Function

@ For latent variable models, one has

po(y) = /Pe (x,y)dx

where the integral cannot often be evaluated.

@ A standard “solution” consists of using MCMC to sample from

p(6,x|y) < pg(x,y)p(6)

by updating iterately x and 0.

@ Gibbs sampling strategies can be slow mixing and difficult to put in
practice.

o Could we use approximations of pg (y) within MH instead?
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Pseudo-Marginal MH algorithm

o Key Idea: Replace py (y) by an estimate pg (y) in MH.
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Pseudo-Marginal MH algorithm

o Key Idea: Replace py (y) by an estimate pg (y) in MH.
At iteration i

e Sample & ~ q (| ®-1).

o Compute an estimate py (y) of py (y).

@ With probability
1A Po(y)p(®) q(9i-1]0)
Po, ., (y)p(0i—1) g (B8] 8i—1)’

set 9; = 0, py, (v) = Py (v) otherwise set ¢; = 0;_1,
Po; (v) = Po; 1 (¥) -

(Tokyo, 24/07/14)



Pseudo-Marginal MH algorithm

e Key ldea: Replace py(y) by an estimate py (y) in MH.
At iteration |

e Sample & ~ g (-|®i-1).

o Compute an estimate py (y) of ps (y) .

o With probability

P(yi®) p() q(8ia]8) — P(:8)/p(y:8)
p(yiti—1)p(®i—1) q(99i—1)  pP(y;%i-1)/p(y;¥i-1)

N

AN

exact MH ratio noise

set 9; = 0, py, (v) = Py (v) otherwise set ¢; = ¥,
/1519,' (y) = ﬁﬁiq (y) .
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Importance Sampling Estimator

@ For latent variable models, one has

po(y) = [ oy d = mqu)dx

where gg(x) is an importance sampling density.
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Importance Sampling Estimator

@ For latent variable models, one has

po(y) = [ oy d = mqu)dx

where gg(x) is an importance sampling density.
@ An unbiased estimator is given by
Xk .
Z Po ( ) , Xk iid.

k:1 CI9 Xk q@()
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Sequential Monte Carlo Estimator

® {X:i},>; is a X-valued latent Markov process with X1 ~ u(-;6) and
Xt+1|Xt ~ f (" Xtr 9)
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Sequential Monte Carlo Estimator

® {X:i},>; is a X-valued latent Markov process with X1 ~ u(-;6) and
Xt+1|Xt ~ f (" Xtr 9)

o Observations {Y;},., are conditionally independent given {X;},.,
with Yt| {Xk}kzo ~ g(’Xt,G)

@ Likelihood of y1.7 = (yl. ---:)/T) is
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Sequential Monte Carlo Estimator

o {X:},~ is a X-valued latent Markov process with X; ~ (-;6) and
Xes1|Xe ~ (] X¢; 0).

@ Observations {Y;},-, are conditionally independent given {X:},-,
with Y¢| {Xi}so ~ &(:1X:,6). -

@ Likelihood of y1.7 = (yl. ---:)/T) is

p(y1.7:6) :/Xr p(x1.7, y1.7:0)dx1. 7.

@ SMC provides an unbiased estimator of relative variance O (T /N)
where N is the number of particles.
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Main Result

o Proposition: Let py (y) be a non-negative unbiased estimator then
the pseudo-marginal MH kernel admits an invariant distribution
admitting 77 (0) as a marginal.
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Main Result

o Proposition: Let py (y) be a non-negative unbiased estimator then
the pseudo-marginal MH kernel admits an invariant distribution
admitting 77 (0) as a marginal.

@ "Proof’. Define Z =logp (y;0) /p(y;0) and an auxiliary target
density on ® x R

7(0,z) =1(0) exp(z)gp(z)

unbiasedness < [(-)dz=1

where Z ~ gy; e.g. importance sampling or particle filter.
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Main Result

o Proposition: Let py (y) be a non-negative unbiased estimator then
the pseudo-marginal MH kernel admits an invariant distribution
admitting 77 (0) as a marginal.

@ "Proof’. Define Z =logp (y;0) /p(y;0) and an auxiliary target
density on ® x R

7(0,z) =1(0) exp(z)gp(z)
unbiasedness < [(-)dz=1

where Z ~ gy; e.g. importance sampling or particle filter.

@ Pseudo marginal MH is MH of target 77(6, z) and proposal
q(6,9)gs(z) as

7(8.2) q(8i-1]0)gs ,(Zi-1) _ Pi®) p(8) q(Bia]d)
m(di-1.Zi-1) q(9]9i-1)gs(2) P(y;®i1) p(8i—1) g (O ®i1)
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A Nonlinear State-Space Model

@ Standard non-linear model

Xe= 3Xe1+ 251f;t21_1 +8cos(1.2t) + V;, Vi Ld Az (0,0%),

Yi= AX24+ W, WK N(0,0%).
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A Nonlinear State-Space Model

@ Standard non-linear model

Xe= 3Xe1+ 251f;t21_1 +8cos(1.2t) + V;, Vi Ld Az (0,0%),

Yi= AX24+ W, WK N(0,0%).
e T =200 data points with § = (0}, 07%,) = (10, 10).
e Difficult to perform standard MCMC as p (x1.7| y1.7,0) is highly
multimodal.

e We sample from p (0| y1.7) using a random walk pseudo-marginal
MH where py (y1.7) is estimated using SMC with N particles.
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A Nonlinear State-Space Model

Figure: Autocorrelation of {(79)} and {UW} of the MH sampler for various N.
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Optimal Tuning of the Pseudo-marginal MH

@ A key issue from a practical point of view is the selection of M.
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Optimal Tuning of the Pseudo-marginal MH

@ A key issue from a practical point of view is the selection of M.

o If N is too small, then the algorithm mixes poorly and will require
many MCMC iterations.

e If N is too large, then each pseudo-marginal MH iteration is
expensive.

(Tokyo, 24/07/14)




Inefficiency of the Pseudo-marginal MH

e Consider the particle MH chain {6;, Z;} of 7T—invariant transition
kernel @

Q{(0,z),(dd,dw)} = q(8|0)gs(w)min{l,r(6,0)exp(w—z)}dddw
+ {1 — QQ (9, Z)} (5(9’2) (dl9, dW)
where r (0,9) = t(9)q(0]9)/ {7(0)q(8|6)} .
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Inefficiency of the Pseudo-marginal MH

e Consider the particle MH chain {6;, Z;} of 7T—invariant transition
kernel @

Q{(0,z),(dd,dw)} = q(8|0)gs(w)min{l,r(6,0)exp(w—z)}dddw
+ {1 - QQ (9, Z)} (5(9’2) (d19, dW)
where r (0,9) = t(9)q(0]9)/ {7(0)q(8|6)} .
e Proposition (KV 1986). Let h: ® — R, 7t (h) = E [h(6)] and
7, (h) = n= Y7, h(0;). If {6;, Z;} is stationary and ergodic,
Vi [h(6)] < oo and
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Inefficiency of the Pseudo-marginal MH

e Consider the particle MH chain {6;, Z;} of 7T—invariant transition
kernel @

Q{(0,z),(dd,dw)} = q(8|0)gs(w)min{l,r(6,0)exp(w—z)}dddw
+{1-0¢(6,2)} 5,z (dB, dw)

where r (0,9) = t(9)q(0]9)/ {7(0)q(8|6)} .

e Proposition (KV 1986). Let h: ® — R, 7t (h) = E [h(6)] and
7o (h) = n Y Y0, h(6;). If {6;, Z;} is stationary and ergodic,
Vi [h(8)] < o0 and
IFR (0) = 1425 1 corrz g {h(80) , h(62)} < oo then

V{7 (h) =7 (h)} — N (0. Vx [A(8)] IFR (o))

@ The Integrated Autocorrelation Time IFhQ is a measure of
inefficiency of Q which we want to minimize for a fixed
computational budget.
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Aim of the Analysis

o Simplifying Assumption: The noise Z is independent of 8 and
Gaussian; i.e. Z ~ N (—02/2;0%):

7T(0,z) = (0) exp (2) go (2) = T (O) N (2;0°/2;07) .

nz,”(z)

(Tokyo, 24/07/14)



Aim of the Analysis

o Simplifying Assumption: The noise Z is independent of 8 and
Gaussian; i.e. Z ~ N (—02/2;0%):

7T(0,z) = (0) exp (2) go (2) = T (O) N (2;0°/2;07) .
z.0(2)

@ Aim: Minimize the computational cost
CT,? (o) = IFhQ (o) /o?

as 02 « 1/N and computational efforts proportional to N.

(Tokyo, 24/07/14)



Aim of the Analysis

o Simplifying Assumption: The noise Z is independent of 8 and
Gaussian; i.e. Z ~ N (—02/2;0%):

7T(0,z) = (0) exp (2) go (2) = T (O) N (2;0°/2;07) .
~—_—
nz,”(z)
@ Aim: Minimize the computational cost
CT,? (o) = IFhQ (o) /o?

as 02 « 1/N and computational efforts proportional to N.
o Special cases:

(Tokyo, 24/07/14)



Aim of the Analysis

o Simplifying Assumption: The noise Z is independent of 8 and
Gaussian; i.e. Z ~ N (—02/2;0%):

7T(0,z) = (0) exp (2) go (2) = T (O) N (2;0°/2;07) .
~—_—
nz,”(z)
@ Aim: Minimize the computational cost
CT,? (o) = IFhQ (o) /o?

as 02 « 1/N and computational efforts proportional to N.
o Special cases:

@ When q(8|0) = p (8| y), 0opt = 0.92 (Pitt et al., 2012).

(Tokyo, 24/07/14)



Aim of the Analysis

o Simplifying Assumption: The noise Z is independent of 8 and
Gaussian; i.e. Z ~ N (—02/2;0%):

7T(0,z) = (0) exp (2) go (2) = T (O) N (2;0°/2;07) .
z.0(2)

@ Aim: Minimize the computational cost
CT,? (o) = IFhQ (o) /o?

as 02 « 1/N and computational efforts proportional to N.
o Special cases:

@ When ¢(9]0) = p(l9|y) Topt = 0.92 (Pitt et al., 2012).
@ When 77 ( Hf ;) and q(8|0) is an isotropic Gaussian random

walk then, as d — 00, Topt = 1.81 (Sherlock, Thiery, Roberts &
Rosenthal, 2014).
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@ For general proposals and targets, direct minimization of
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Sketch of the Analysis

@ For general proposals and targets, direct minimization of
CThQ (o) = IFhQ (o) /0% impossible so minimize an upper bound over
it.

o We introduce an auxiliary T—invariant kernel

Q" {(6,2),(dd,dw)} = q(8]0)g,(w ) (9 19) az (z W) dddw

where
apx (0,9) =min{1,r(0,9)}, az(z,w)=min{1l,exp(w—2)}

o Peskun's theorem (1973) guarantees that IFQ (o) < IF® () so that
CTR (o) < CTR (o).
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Sketch of the Analysis

o Let (6, Z;);~, be generated by Q*.
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Sketch of the Analysis

o Let (6, Z;);~, be generated by Q*.

@ Denote (5, Z) the accepted proposals and (Ti)izl the associated

i>1
sojourn times; i.e. (51 Z) =(01,21) ="+ = (0, 2Zr,),
(52, 22> = (0¢,,1, Zry41) = - -+ = (0r,, Zr,) and so on where

(5i+1,2+1) # (5/'.2') a.s.
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Sketch of the Analysis

o Let (6, Z;);~, be generated by Q*.

@ Denote (5, Z) the accepted proposals and (Ti)izl the associated

i>1
sojourn times; i.e. (51 Z) =(01,21) ="+ = (0, 2Zr,),
(52, Z) = (0¢,,1, Zry41) = - -+ = (0r,, Zr,) and so on where

(5i+1,2+1) # (5/'.2') a.s.

° IF,?* (0) can be re-expressed in terms of IF/?/*( o) where

0ex07) (

QR {(0.2),(dd, dw)} = QF(6,d8) Q% (z,dw)
q(do|0)aex (0,9) gr(dw)az (z, w)
Oex (0) 07,0 (2)
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Main Result

e Proposition: Under weak assumptions, we have /F,? (0) < IF,?* (0)
where

_ 2{1—|—thEX}

@Ex
1+ th/QEx

X i}‘l’n (h/QEX' CN)EX) ¢, (1/sz Qf)

1+ IFEX

Z,0 (QZ,O’)

IFhQ* ((T> {TCZF (I/QZ,O’) - 1/7‘(2,0 (QZ,(T)}

where ¢, (¢, P) denotes the autocorrelation at lag n under a Markov
kernel P.
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Main Result

e Proposition: Under weak assumptions, we have /F,? (0) < IF,?* (0)
where

1+ IFEX
_ 2{@I7EX} {nz.+ (l/gzvg) —1/nz7,4 (Qz,a)}
1+ /Fh/QEx

X i}‘l’n (h/QEX' CN)EX) ¢, (1/sz Qf)

1+ IFEX

Z,0 (QZ,O’)

IFy (©)

where ¢, (¢, P) denotes the autocorrelation at lag n under a Markov
kernel P.

@ This identity allows us to “decouple” the influence of the parameter
and of the noise on IFQ" ().
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Simpler Bounds on the Relative Inefficiency

6EX NEX - .
o If /Fh/QEx > 1, eg. @ is a positive kernel, then

1 1
<1+ IFhEX) 7.0 (1/07,) — TFEX

IFEX — IFF*X —2

IR (o) _ IFY (o) _ 1 (

and the bound is tight as IFFX — 1 or ¢ — 0.
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Simpler Bounds on the Relative Inefficiency

éEX NEX - .
o If /Fh/QEx > 1, eg. @ is a positive kernel, then

1 1
<1+ IFhEX) 7.0 (1/07,) — TFEX

IFEX — IFF*X —2

IR (o) _ IFY (o) _ 1 (

and the bound is tight as IFFX — 1 or ¢ — 0.

EX
o As IFJ'h/QEX — 09,

IFR" (o) . 1
IFY 720 (0z,)
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Simpler Bounds on the Relative Inefficiency

éEX NEX - .
o If /Fh/QEx > 1, eg. @ is a positive kernel, then

1

1
<1+ IFhEX) 7.0 (1/07,) — TFEX

IFEX — IFF*X —2

IR (o) _ IFY (o) _ 1 (

and the bound is tight as IFFX — 1 or ¢ — 0.

EX
o As IFJ'h/QEX — 09,

IRy (o) 1
IR mze(ez,)

@ Results used to minimize w.r.t ¢ upper bounds on
CTR (0) = IFQ (0) /02

(Tokyo, 24/07/14)




Bounds on Relative Computational Costs
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@ For good proposals, select o /=~ 1 whereas for poor proposals, select
o~ 1.7.
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Practical Guidelines

@ For good proposals, select o /=~ 1 whereas for poor proposals, select
o~ 1.7.

@ When you have no clue about the proposal efficiency,

@ If oopt = 1 and you pick ¢ = 1.7, computing time increases by
~150%.
@ If oopt = 1.7 and you pick o = 1, computing time increases by ~50%.
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Practical Guidelines

For good proposals, select ¢ = 1 whereas for poor proposals, select
o~ 1.7.

When you have no clue about the proposal efficiency,

If 0opt = 1 and you pick ¢ = 1.7, computing time increases by
~150%.

If 0opt = 1.7 and you pick o = 1, computing time increases by ~50%.
If 0opt = 1 or 0opt = 1.7 and you pick ¢ = 1.2, computing time
increases by ~15%.

D)



Example: Noisy Autoregressive Example

o Consider

Xo= pl—¢)+9X+ Ve, V" N (0,02),
Ye= Xe+ We, W' N (0,07),

where 6 = (cp U, a%)_
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Example: Noisy Autoregressive Example

o Consider
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(Tokyo, 24/07/14)



Example: Noisy Autoregressive Example
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multivariate t-distribution.
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Example: Noisy Autoregressive Example

o Consider

Xo= pl—¢)+9X+ Ve, V" N (0,02),

Yi= X4+ W, W N(0,02),

where 6 = (cp U, U%).
o Likelihood can be computed exactly using Kalman.

@ Autoregressive Metropolis proposal of coefficient p for ¢ based on
multivariate t-distribution.

@ N is selected so as to obtain o (é) Asconstant where 6 posterior mean.

(Tokyo, 24/07/14)



Empirical vs Asymptotic Distribution of Log-Likelihood

Estimator
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Empirical distribution of Z at posterior mean (left) and marginalized over
samples from 71q () = [ 71 (0) q (6, 9) db.
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Relative Inefficiency and Computing Time
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Figure: From left to right: RCT vs N, RCT vs 0(8), RIF} against N and
RIF,? against o(6) for various values of p and different parameters.
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o Simplified quantitative analysis of the particle MH algorithm.
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Discussion

o Simplified quantitative analysis of the particle MH algorithm.
e Particle MH scales roughly in O (T?).

@ Particle Gibbs sampling displays better theoretical properties: scaling?

(Tokyo, 24/07/14)



