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Bayesian Inference

Likelihood function pθ (y) where θ ∈ Θ ⊆ Rd .

Prior distribution of density p (θ) .

Bayesian inference relies on the posterior

π (θ) = p ( θ| y) = pθ (y) p (θ)∫
Θ pθ′ (y) p

(
θ′
)
dθ′
.

For non-trivial models, inference relies typically on MCMC.
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Metropolis-Hastings algorithm

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1).
With probability

1∧ π (ϑ)

π (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

= 1∧ pϑ (y) p (ϑ)
pϑi−1 (y) p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

,

set ϑi = ϑ, otherwise set ϑi = ϑi−1.

Problem: Metropolis-Hastings (MH) cannot be implemented if
pϑ (y) cannot be evaluated.
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Intractable Likelihood Function

For latent variable models, one has

pθ (y) =
∫
pθ (x , y) dx

where the integral cannot often be evaluated.

A standard “solution”consists of using MCMC to sample from

p ( θ, x | y) ∝ pθ (x , y) p (θ)

by updating iterately x and θ.

Gibbs sampling strategies can be slow mixing and diffi cult to put in
practice.

Could we use approximations of pθ (y) within MH instead?
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Pseudo-Marginal MH algorithm

Key Idea: Replace pϑ (y) by an estimate p̂ϑ (y) in MH.

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1) .
Compute an estimate p̂ϑ (y) of pϑ (y) .

With probability

1∧ p̂ϑ (y) p (ϑ)
p̂ϑi−1 (y) p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

,

set ϑi = ϑ, p̂ϑi (y) = p̂ϑ (y) otherwise set ϑi = ϑi−1,
p̂ϑi (y) = p̂ϑi−1 (y) .
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Importance Sampling Estimator

For latent variable models, one has

pθ (y) =
∫
pθ (x , y) dx =

∫ pθ (x , y)
qθ(x)

qθ(x)dx

where qθ(x) is an importance sampling density.

An unbiased estimator is given by

p̂θ(y) =
1
N

N

∑
k=1

pθ

(
X k , y

)
qθ(X k )

, X k
i.i.d.∼ qθ(·)
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Sequential Monte Carlo Estimator

{Xt}t≥1 is a X-valued latent Markov process with X1 ∼ µ(·; θ) and
Xt+1|Xt ∼ f ( ·|Xt ; θ).

Observations {Yt}t≥1 are conditionally independent given {Xt}t≥0
with Yt | {Xk}k≥0 ∼ g(·|Xt , θ).
Likelihood of y1:T = (y1, ..., yT ) is

p(y1:T ; θ) =
∫

XT
p(x1:T , y1:T ; θ)dx1:T .

SMC provides an unbiased estimator of relative variance O (T/N)
where N is the number of particles.
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Main Result

Proposition: Let p̂ϑ (y) be a non-negative unbiased estimator then
the pseudo-marginal MH kernel admits an invariant distribution
admitting π (θ) as a marginal.

“Proof”. Define Z = log p̂ (y ; θ) /p (y ; θ) and an auxiliary target
density on Θ×R

π(θ, z) = π(θ) exp(z)gθ(z)︸ ︷︷ ︸
unbiasedness ⇔

∫
(·)dz=1

where Z ∼ gθ; e.g. importance sampling or particle filter.

Pseudo marginal MH is MH of target π(θ, z) and proposal
q (θ, ϑ) gϑ(z) as

π(ϑ,Z )
π(ϑi−1,Zi−1)

q (ϑi−1| ϑ) gϑi−1(Zi−1)
q (ϑ| ϑi−1) gϑ(Z )

=
p̂ (y ; ϑ)
p̂ (y ; ϑi−1)

p (ϑ)
p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

.
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A Nonlinear State-Space Model

Standard non-linear model

Xt = 1
2Xt−1 + 25

Xt−1
1+X 2t−1

+ 8 cos(1.2t) + Vt , Vt
i.i.d.∼ N

(
0, σ2V

)
,

Yt = 1
20X

2
t +Wt , Wt

i.i.d.∼ N
(
0, σ2W

)
.

T = 200 data points with θ =
(
σ2V , σ

2
W

)
= (10, 10).

Diffi cult to perform standard MCMC as p (x1:T | y1:T , θ) is highly
multimodal.

We sample from p ( θ| y1:T ) using a random walk pseudo-marginal
MH where pθ (y1:T ) is estimated using SMC with N particles.
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A Nonlinear State-Space Model
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Figure: Autocorrelation of
{

σ
(i )
V

}
and

{
σ
(i )
W

}
of the MH sampler for various N.
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Optimal Tuning of the Pseudo-marginal MH

A key issue from a practical point of view is the selection of N.

If N is too small, then the algorithm mixes poorly and will require
many MCMC iterations.

If N is too large, then each pseudo-marginal MH iteration is
expensive.
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Ineffi ciency of the Pseudo-marginal MH

Consider the particle MH chain {θi ,Zi} of π−invariant transition
kernel Q

Q {(θ, z) , (dϑ, dw)} = q(ϑ|θ)gϑ(w)min {1, r (θ, ϑ) exp (w − z)} dϑdw

+
{
1− $Q (θ, z)

}
δ(θ,z ) (dϑ, dw)

where r (θ, ϑ) = π(ϑ)q(θ|ϑ)/ {π(θ)q(ϑ|θ)} .

Proposition (KV 1986). Let h : Θ→ R, π (h) = Eπ [h(θ)] and
π̂n (h) = n−1 ∑n

i=1 h(θi ). If {θi ,Zi} is stationary and ergodic,
Vπ [h(θ)] < ∞ and
IFQh (σ) = 1+ 2∑∞

τ=1 corrπ,Q {h (θ0) , h (θτ)} < ∞ then

√
n {π̂n (h)− π (h)} → N

(
0,Vπ [h(θ)] IF

Q
h (σ)

)
.

The Integrated Autocorrelation Time IFQh is a measure of
ineffi ciency of Q which we want to minimize for a fixed
computational budget.
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Aim of the Analysis

Simplifying Assumption: The noise Z is independent of θ and
Gaussian; i.e. Z ∼ N

(
−σ2/2; σ2

)
:

π (θ, z) = π (θ) exp (z) gσ (z)︸ ︷︷ ︸
πZ,σ(z )

= π (θ)N
(
z ; σ2/2; σ2

)
.

Aim: Minimize the computational cost

CTQh (σ) = IF
Q
h (σ) /σ2

as σ2 ∝ 1/N and computational efforts proportional to N.
Special cases:

1 When q(ϑ|θ) = p (ϑ| y), σopt = 0.92 (Pitt et al., 2012).

2 When π (θ) =
d

∏
i=1
f (θi ) and q(ϑ|θ) is an isotropic Gaussian random

walk then, as d → ∞, σopt = 1.81 (Sherlock, Thiery, Roberts &
Rosenthal, 2014).
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Sketch of the Analysis

For general proposals and targets, direct minimization of
CTQh (σ) = IF

Q
h (σ) /σ2 impossible so minimize an upper bound over

it.

We introduce an auxiliary π−invariant kernel

Q∗ {(θ, z) , (dϑ, dw)} = q(ϑ|θ)gσ(w)αEX (θ, ϑ) αZ (z ,w) dϑdw

+
{
1− $EX (θ) $Z,σ (z)

}
δ(θ,z ) (dϑ, dw)

where

αEX (θ, ϑ) = min {1, r (θ, ϑ)} , αZ (z ,w) = min {1, exp (w − z)}

Peskun’s theorem (1973) guarantees that IFQh (σ) ≤ IF
Q ∗
h (σ) so that

CTQh (σ) ≤ CT
Q ∗
h (σ).
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Sketch of the Analysis

Let (θi ,Zi )i≥1 be generated by Q
∗.

Denote
(

θ̃i , Z̃i
)
i≥1

the accepted proposals and (τi )i≥1 the associated

sojourn times; i.e.
(

θ̃1, Z̃1
)
= (θ1,Z1) = · · · = (θτ1 ,Zτ1),(

θ̃2, Z̃2
)
= (θτ1+1 ,Zτ1+1) = · · · = (θτ2 ,Zτ2) and so on where(

θ̃i+1, Z̃i+1
)
6=
(

θ̃i , Z̃i
)
a.s.

IFQ
∗

h (σ) can be re-expressed in terms of IF Q̃
∗

h/($EX$Z)
(σ) where

Q̃∗ {(θ, z) , (dϑ, dw)} = Q̃EX (θ, dϑ) Q̃Zσ (z , dw)

=
q(dϑ|θ)αEX (θ, ϑ)

$EX (θ)

gσ(dw)αZ (z ,w)
$Z,σ (z)
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Main Result

Proposition: Under weak assumptions, we have IFQh (σ) ≤ IF
Q ∗
h (σ)

where

IFQ
∗

h (σ) = 2

{
1+ IF EXh

}
1+ IF Q̃

EX

h/$EX

{
πZ,σ

(
1/$Z,σ

)
− 1/πZ,σ

(
$Z,σ

)}
×

∞

∑
n=0

φn

(
h/$EX, Q̃

EX
)

φn

(
1/$Z, Q̃

Z
σ

)
+
1+ IF EXh

πZ,σ
(
$Z,σ

) − 1,
where φn (ϕ,P) denotes the autocorrelation at lag n under a Markov
kernel P.

This identity allows us to “decouple” the influence of the parameter
and of the noise on IFQ

∗

h (σ).

(Tokyo, 24/07/14) 17 / 24



Main Result

Proposition: Under weak assumptions, we have IFQh (σ) ≤ IF
Q ∗
h (σ)

where

IFQ
∗

h (σ) = 2

{
1+ IF EXh

}
1+ IF Q̃

EX

h/$EX

{
πZ,σ

(
1/$Z,σ

)
− 1/πZ,σ

(
$Z,σ

)}
×

∞

∑
n=0

φn

(
h/$EX, Q̃

EX
)

φn

(
1/$Z, Q̃

Z
σ

)
+
1+ IF EXh

πZ,σ
(
$Z,σ

) − 1,
where φn (ϕ,P) denotes the autocorrelation at lag n under a Markov
kernel P.

This identity allows us to “decouple” the influence of the parameter
and of the noise on IFQ

∗

h (σ).

(Tokyo, 24/07/14) 17 / 24



Simpler Bounds on the Relative Ineffi ciency

If IF Q̃
EX

h/$EX
≥ 1, e.g. Q̃EX is a positive kernel, then

IFQh (σ)

IF EXh
≤ IFQ

∗

h (σ)

IF EXh
≤ 1
2

(
1+

1
IF EXh

)
πZ,σ

(
1/$Z,σ

)
− 1
IF EXh

and the bound is tight as IF EXh → 1 or σ→ 0.

As IF EXJ ,h/$EX
→ ∞,

IFQ
∗

h (σ)

IF EXh
→ 1

πZ,σ
(
$Z,σ

) .
Results used to minimize w.r.t σ upper bounds on
CTQh (σ) = IF

Q
h (σ) /σ2.
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Bounds on Relative Computational Costs
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Figure: Bounds on IFQh (σ) /
(

σ2IFEXh

)
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Practical Guidelines

For good proposals, select σ ≈ 1 whereas for poor proposals, select
σ ≈ 1.7.

When you have no clue about the proposal effi ciency,

1 If σopt = 1 and you pick σ = 1.7, computing time increases by
≈150%.

2 If σopt = 1.7 and you pick σ = 1, computing time increases by ≈50%.
3 If σopt = 1 or σopt = 1.7 and you pick σ = 1.2, computing time
increases by ≈15%.
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Example: Noisy Autoregressive Example

Consider

Xt = µ(1− φ) + φXt + Vt , Vt
i.i.d.∼ N

(
0, σ2η

)
,

Yt = Xt +Wt , Wt
i.i.d.∼ N

(
0, σ2ε

)
,

where θ =
(

φ, µ, σ2η

)
.

Likelihood can be computed exactly using Kalman.

Autoregressive Metropolis proposal of coeffi cient ρ for ϑ based on
multivariate t-distribution.

N is selected so as to obtain σ
(
θ
)
≈constant where θ posterior mean.
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Empirical vs Asymptotic Distribution of Log-Likelihood
Estimator

Empirical distribution of Z at posterior mean (left) and marginalized over
samples from πq (ϑ) =

∫
π (θ) q (θ, ϑ) dθ.
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Relative Ineffi ciency and Computing Time
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Figure: From left to right: RCT Q
h vs N, RCT

Q
h vs σ(θ), RIF Qh against N and

RIF Qh against σ(θ) for various values of ρ and different parameters.
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Discussion

Simplified quantitative analysis of the particle MH algorithm.

Particle MH scales roughly in O
(
T 2
)
.

Particle Gibbs sampling displays better theoretical properties: scaling?
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