Efficient Implementation of MCMC When Using An Unbiased Likelihood Estimator

Arnaud Doucet
University of Oxford
Joint work with M. Pitt, G. Deligiannidis \& R. Kohn

Tokyo, 24/07/14

Bayesian Inference

- Likelihood function $p_{\theta}(y)$ where $\theta \in \Theta \subseteq \mathbb{R}^{d}$.

Bayesian Inference

- Likelihood function $p_{\theta}(y)$ where $\theta \in \Theta \subseteq \mathbb{R}^{d}$.
- Prior distribution of density $p(\theta)$.

Bayesian Inference

- Likelihood function $p_{\theta}(y)$ where $\theta \in \Theta \subseteq \mathbb{R}^{d}$.
- Prior distribution of density $p(\theta)$.
- Bayesian inference relies on the posterior

$$
\pi(\theta)=p(\theta \mid y)=\frac{p_{\theta}(y) p(\theta)}{\int_{\Theta} p_{\theta^{\prime}}(y) p\left(\theta^{\prime}\right) d \theta^{\prime}}
$$

Bayesian Inference

- Likelihood function $p_{\theta}(y)$ where $\theta \in \Theta \subseteq \mathbb{R}^{d}$.
- Prior distribution of density $p(\theta)$.
- Bayesian inference relies on the posterior

$$
\pi(\theta)=p(\theta \mid y)=\frac{p_{\theta}(y) p(\theta)}{\int_{\Theta} p_{\theta^{\prime}}(y) p\left(\theta^{\prime}\right) d \theta^{\prime}}
$$

- For non-trivial models, inference relies typically on MCMC.

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.

Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- With probability

$$
1 \wedge \frac{\pi(\vartheta)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}=1 \wedge \frac{p_{\vartheta}(y) p(\vartheta)}{p_{\vartheta_{i-1}}(y) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}
$$

set $\vartheta_{i}=\vartheta$, otherwise set $\vartheta_{i}=\vartheta_{i-1}$.

Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- With probability

$$
1 \wedge \frac{\pi(\vartheta)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}=1 \wedge \frac{p_{\vartheta}(y) p(\vartheta)}{p_{\vartheta_{i-1}}(y) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}
$$

set $\vartheta_{i}=\vartheta$, otherwise set $\vartheta_{i}=\vartheta_{i-1}$.

- Problem: Metropolis-Hastings (MH) cannot be implemented if $p_{\vartheta}(y)$ cannot be evaluated.

Intractable Likelihood Function

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x
$$

where the integral cannot often be evaluated.

Intractable Likelihood Function

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x
$$

where the integral cannot often be evaluated.

- A standard "solution" consists of using MCMC to sample from

$$
p(\theta, x \mid y) \propto p_{\theta}(x, y) p(\theta)
$$

by updating iterately x and θ.

Intractable Likelihood Function

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x
$$

where the integral cannot often be evaluated.

- A standard "solution" consists of using MCMC to sample from

$$
p(\theta, x \mid y) \propto p_{\theta}(x, y) p(\theta)
$$

by updating iterately x and θ.

- Gibbs sampling strategies can be slow mixing and difficult to put in practice.

Intractable Likelihood Function

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x
$$

where the integral cannot often be evaluated.

- A standard "solution" consists of using MCMC to sample from

$$
p(\theta, x \mid y) \propto p_{\theta}(x, y) p(\theta)
$$

by updating iterately x and θ.

- Gibbs sampling strategies can be slow mixing and difficult to put in practice.
- Could we use approximations of $p_{\theta}(y)$ within MH instead?

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in $M H$.

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in $M H$.

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in MH .

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in MH .

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}(y)$ of $p_{\vartheta}(y)$.

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in MH .

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}(y)$ of $p_{\vartheta}(y)$.
- With probability

$$
1 \wedge \frac{\widehat{p}_{\vartheta}(y) p(\vartheta)}{\hat{p}_{\vartheta_{i-1}}(y) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}
$$

set $\vartheta_{i}=\vartheta, \widehat{p}_{\vartheta_{i}}(y)=\widehat{p}_{\vartheta}(y)$ otherwise set $\vartheta_{i}=\vartheta_{i-1}$,
$\widehat{p}_{\vartheta_{i}}(y)=\widehat{p}_{\vartheta_{i-1}}(y)$.

Pseudo-Marginal MH algorithm

- Key Idea: Replace $p_{\vartheta}(y)$ by an estimate $\widehat{p}_{\vartheta}(y)$ in MH .

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}(y)$ of $p_{\vartheta}(y)$.
- With probability

$$
1 \wedge \underbrace{\frac{p(y ; \vartheta)}{p\left(y ; \vartheta_{i-1}\right)} \frac{p(\vartheta)}{p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}}_{\text {exact MH ratio }} \times \underbrace{\frac{\widehat{p}(y ; \vartheta) / p(y ; \vartheta)}{\hat{p}\left(y ; \vartheta_{i-1}\right) / p\left(y ; \vartheta_{i-1}\right)}}_{\text {noise }}
$$

set $\vartheta_{i}=\vartheta, \widehat{p}_{\vartheta_{i}}(y)=\widehat{p}_{\vartheta}(y)$ otherwise set $\vartheta_{i}=\vartheta_{i-1}$,
$\widehat{p}_{\vartheta_{i}}(y)=\widehat{p}_{\vartheta_{i-1}}(y)$.

Importance Sampling Estimator

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x=\int \frac{p_{\theta}(x, y)}{q_{\theta}(x)} q_{\theta}(x) d x
$$

where $q_{\theta}(x)$ is an importance sampling density.

Importance Sampling Estimator

- For latent variable models, one has

$$
p_{\theta}(y)=\int p_{\theta}(x, y) d x=\int \frac{p_{\theta}(x, y)}{q_{\theta}(x)} q_{\theta}(x) d x
$$

where $q_{\theta}(x)$ is an importance sampling density.

- An unbiased estimator is given by

$$
\hat{p}_{\theta}(y)=\frac{1}{N} \sum_{k=1}^{N} \frac{p_{\theta}\left(X^{k}, y\right)}{q_{\theta}\left(X^{k}\right)}, \quad x \stackrel{k}{\stackrel{\text { i.i.d. }}{\sim} q_{\theta}(\cdot)}
$$

Sequential Monte Carlo Estimator

- $\left\{X_{t}\right\}_{t>1}$ is a \mathbb{X}-valued latent Markov process with $X_{1} \sim \mu(\cdot ; \theta)$ and $X_{t+1} \mid \bar{X}_{t} \sim f\left(\cdot \mid X_{t} ; \theta\right)$.

Sequential Monte Carlo Estimator

- $\left\{X_{t}\right\}_{t>1}$ is a \mathbb{X}-valued latent Markov process with $X_{1} \sim \mu(\cdot ; \theta)$ and $X_{t+1} \mid \bar{X}_{t} \sim f\left(\cdot \mid X_{t} ; \theta\right)$.
- Observations $\left\{Y_{t}\right\}_{t \geq 1}$ are conditionally independent given $\left\{X_{t}\right\}_{t \geq 0}$ with $Y_{t} \mid\left\{X_{k}\right\}_{k \geq 0} \sim g\left(\cdot \mid X_{t}, \theta\right)$.

Sequential Monte Carlo Estimator

- $\left\{X_{t}\right\}_{t \geq 1}$ is a \mathbb{X}-valued latent Markov process with $X_{1} \sim \mu(\cdot ; \theta)$ and $X_{t+1} \mid \bar{X}_{t} \sim f\left(\cdot \mid X_{t} ; \theta\right)$.
- Observations $\left\{Y_{t}\right\}_{t \geq 1}$ are conditionally independent given $\left\{X_{t}\right\}_{t \geq 0}$ with $Y_{t} \mid\left\{X_{k}\right\}_{k \geq 0} \sim g\left(\cdot \mid X_{t}, \theta\right)$.
- Likelihood of $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ is

$$
p\left(y_{1: T} ; \theta\right)=\int_{\mathbb{X}^{T}} p\left(x_{1: T}, y_{1: T} ; \theta\right) d x_{1: T} .
$$

Sequential Monte Carlo Estimator

- $\left\{X_{t}\right\}_{t \geq 1}$ is a \mathbb{X}-valued latent Markov process with $X_{1} \sim \mu(\cdot ; \theta)$ and $X_{t+1} \mid \bar{X}_{t} \sim f\left(\cdot \mid X_{t} ; \theta\right)$.
- Observations $\left\{Y_{t}\right\}_{t \geq 1}$ are conditionally independent given $\left\{X_{t}\right\}_{t \geq 0}$ with $Y_{t} \mid\left\{X_{k}\right\}_{k \geq 0} \sim g\left(\cdot \mid X_{t}, \theta\right)$.
- Likelihood of $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ is

$$
p\left(y_{1: T} ; \theta\right)=\int_{\mathbb{X}^{T}} p\left(x_{1: T}, y_{1: T} ; \theta\right) d x_{1: T} .
$$

- SMC provides an unbiased estimator of relative variance $\mathcal{O}(T / N)$ where N is the number of particles.

Main Result

- Proposition: Let $\widehat{p}_{\vartheta}(y)$ be a non-negative unbiased estimator then the pseudo-marginal MH kernel admits an invariant distribution admitting $\pi(\theta)$ as a marginal.

Main Result

- Proposition: Let $\widehat{p}_{\vartheta}(y)$ be a non-negative unbiased estimator then the pseudo-marginal MH kernel admits an invariant distribution admitting $\pi(\theta)$ as a marginal.
- "Proof". Define $Z=\log \widehat{p}(y ; \theta) / p(y ; \theta)$ and an auxiliary target density on $\Theta \times \mathbb{R}$

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\theta}(z)}_{\text {unbiasedness } \Leftrightarrow \int(\cdot) d z=1}
$$

where $Z \sim g_{\theta}$; e.g. importance sampling or particle filter.

Main Result

- Proposition: Let $\widehat{p}_{\vartheta}(y)$ be a non-negative unbiased estimator then the pseudo-marginal MH kernel admits an invariant distribution admitting $\pi(\theta)$ as a marginal.
- "Proof". Define $Z=\log \widehat{p}(y ; \theta) / p(y ; \theta)$ and an auxiliary target density on $\Theta \times \mathbb{R}$

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\theta}(z)}_{\text {unbiasedness } \Leftrightarrow \int(\cdot) d z=1}
$$

where $Z \sim g_{\theta}$; e.g. importance sampling or particle filter.

- Pseudo marginal MH is MH of target $\bar{\pi}(\theta, z)$ and proposal $q(\theta, \vartheta) g_{\vartheta}(z)$ as
$\frac{\bar{\pi}(\vartheta, Z)}{\bar{\pi}\left(\vartheta_{i-1}, Z_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right) g_{\vartheta_{i-1}}\left(Z_{i-1}\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right) g_{\vartheta}(Z)}=\frac{\widehat{p}(y ; \vartheta)}{\widehat{p}\left(y ; \vartheta_{i-1}\right)} \frac{p(\vartheta)}{p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}$.

A Nonlinear State-Space Model

- Standard non-linear model

$$
\begin{aligned}
& X_{t}=\frac{1}{2} X_{t-1}+25 \frac{X_{t-1}}{1+X_{t-1}^{2}}+8 \cos (1.2 t)+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{V}^{2}\right) \\
& Y_{t}=\frac{1}{20} X_{t}^{2}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{W}^{2}\right) .
\end{aligned}
$$

A Nonlinear State-Space Model

- Standard non-linear model

$$
\begin{aligned}
& X_{t}=\frac{1}{2} X_{t-1}+25 \frac{X_{t-1}}{1+X_{t-1}^{2}}+8 \cos (1.2 t)+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{V}^{2}\right) \\
& Y_{t}=\frac{1}{20} X_{t}^{2}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{W}^{2}\right) .
\end{aligned}
$$

- $T=200$ data points with $\theta=\left(\sigma_{V}^{2}, \sigma_{W}^{2}\right)=(10,10)$.

A Nonlinear State-Space Model

- Standard non-linear model

$$
\begin{aligned}
& X_{t}=\frac{1}{2} X_{t-1}+25 \frac{X_{t-1}}{1+X_{t-1}^{2}}+8 \cos (1.2 t)+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{V}^{2}\right) \\
& Y_{t}=\frac{1}{20} X_{t}^{2}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{W}^{2}\right) .
\end{aligned}
$$

- $T=200$ data points with $\theta=\left(\sigma_{V}^{2}, \sigma_{W}^{2}\right)=(10,10)$.
- Difficult to perform standard MCMC as $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$ is highly multimodal.

A Nonlinear State-Space Model

- Standard non-linear model

$$
\begin{aligned}
& X_{t}=\frac{1}{2} X_{t-1}+25 \frac{X_{t-1}}{1+X_{t-1}^{2}}+8 \cos (1.2 t)+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{V}^{2}\right) \\
& Y_{t}=\frac{1}{20} X_{t}^{2}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{W}^{2}\right) .
\end{aligned}
$$

- $T=200$ data points with $\theta=\left(\sigma_{V}^{2}, \sigma_{W}^{2}\right)=(10,10)$.
- Difficult to perform standard MCMC as $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$ is highly multimodal.
- We sample from $p\left(\theta \mid y_{1: T}\right)$ using a random walk pseudo-marginal MH where $p_{\theta}\left(y_{1: T}\right)$ is estimated using SMC with N particles.

A Nonlinear State-Space Model

Figure: Autocorrelation of $\left\{\sigma_{V}^{(i)}\right\}$ and $\left\{\sigma_{W}^{(i)}\right\}$ of the MH sampler for various N.

Optimal Tuning of the Pseudo-marginal MH

- A key issue from a practical point of view is the selection of N.

Optimal Tuning of the Pseudo-marginal MH

- A key issue from a practical point of view is the selection of N.
- If N is too small, then the algorithm mixes poorly and will require many MCMC iterations.

Optimal Tuning of the Pseudo-marginal MH

- A key issue from a practical point of view is the selection of N.
- If N is too small, then the algorithm mixes poorly and will require many MCMC iterations.
- If N is too large, then each pseudo-marginal MH iteration is expensive.

Inefficiency of the Pseudo-marginal MH

- Consider the particle MH chain $\left\{\theta_{i}, Z_{i}\right\}$ of $\bar{\pi}$-invariant transition kernel Q
$Q\{(\theta, z),(d \vartheta, d w)\}=q(\vartheta \mid \theta) g_{\vartheta}(w) \min \{1, r(\theta, \vartheta) \exp (w-z)\} d \vartheta d w$

$$
+\left\{1-\varrho_{Q}(\theta, z)\right\} \delta_{(\theta, z)}(d \vartheta, d w)
$$

where $r(\theta, \vartheta)=\pi(\vartheta) q(\theta \mid \vartheta) /\{\pi(\theta) q(\vartheta \mid \theta)\}$.

Inefficiency of the Pseudo-marginal MH

- Consider the particle MH chain $\left\{\theta_{i}, Z_{i}\right\}$ of $\bar{\pi}$-invariant transition kernel Q
$Q\{(\theta, z),(d \vartheta, d w)\}=q(\vartheta \mid \theta) g_{\vartheta}(w) \min \{1, r(\theta, \vartheta) \exp (w-z)\} d \vartheta d w$

$$
+\left\{1-\varrho_{Q}(\theta, z)\right\} \delta_{(\theta, z)}(d \vartheta, d w)
$$

where $r(\theta, \vartheta)=\pi(\vartheta) q(\theta \mid \vartheta) /\{\pi(\theta) q(\vartheta \mid \theta)\}$.

- Proposition (KV 1986). Let $h: \Theta \rightarrow \mathbb{R}, \pi(h)=\mathbb{E}_{\pi}[h(\theta)]$ and $\widehat{\pi}_{n}(h)=n^{-1} \sum_{i=1}^{n} h\left(\theta_{i}\right)$. If $\left\{\theta_{i}, Z_{i}\right\}$ is stationary and ergodic, $\mathbb{V}_{\pi}[h(\theta)]<\infty$ and
$I F_{h}^{Q}(\sigma)=1+2 \sum_{\tau=1}^{\infty} \operatorname{corr}_{\pi, Q}\left\{h\left(\theta_{0}\right), h\left(\theta_{\tau}\right)\right\}<\infty$ then

$$
\sqrt{n}\left\{\widehat{\pi}_{n}(h)-\pi(h)\right\} \rightarrow \mathcal{N}\left(0, \mathbb{V}_{\pi}[h(\theta)] I_{h}^{Q}(\sigma)\right)
$$

Inefficiency of the Pseudo-marginal MH

- Consider the particle MH chain $\left\{\theta_{i}, Z_{i}\right\}$ of $\bar{\pi}$-invariant transition kernel Q
$Q\{(\theta, z),(d \vartheta, d w)\}=q(\vartheta \mid \theta) g_{\vartheta}(w) \min \{1, r(\theta, \vartheta) \exp (w-z)\} d \vartheta d w$

$$
+\left\{1-\varrho_{Q}(\theta, z)\right\} \delta_{(\theta, z)}(d \vartheta, d w)
$$

where $r(\theta, \vartheta)=\pi(\vartheta) q(\theta \mid \vartheta) /\{\pi(\theta) q(\vartheta \mid \theta)\}$.

- Proposition (KV 1986). Let $h: \Theta \rightarrow \mathbb{R}, \pi(h)=\mathbb{E}_{\pi}[h(\theta)]$ and $\widehat{\pi}_{n}(h)=n^{-1} \sum_{i=1}^{n} h\left(\theta_{i}\right)$. If $\left\{\theta_{i}, Z_{i}\right\}$ is stationary and ergodic, $\mathbb{V}_{\pi}[h(\theta)]<\infty$ and
$I F_{h}^{Q}(\sigma)=1+2 \sum_{\tau=1}^{\infty} \operatorname{corr}_{\pi, Q}\left\{h\left(\theta_{0}\right), h\left(\theta_{\tau}\right)\right\}<\infty$ then

$$
\sqrt{n}\left\{\widehat{\pi}_{n}(h)-\pi(h)\right\} \rightarrow \mathcal{N}\left(0, \mathbb{V}_{\pi}[h(\theta)] I F_{h}^{Q}(\sigma)\right)
$$

- The Integrated Autocorrelation Time $I F_{h}^{Q}$ is a measure of inefficiency of Q which we want to minimize for a fixed computational budget.

Aim of the Analysis

- Simplifying Assumption: The noise Z is independent of θ and Gaussian; i.e. $Z \sim \mathcal{N}\left(-\sigma^{2} / 2 ; \sigma^{2}\right)$:

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\sigma}(z)}_{\pi_{z, \sigma}(z)}=\pi(\theta) \mathcal{N}\left(z ; \sigma^{2} / 2 ; \sigma^{2}\right) .
$$

Aim of the Analysis

- Simplifying Assumption: The noise Z is independent of θ and Gaussian; i.e. $Z \sim \mathcal{N}\left(-\sigma^{2} / 2 ; \sigma^{2}\right)$:

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\sigma}(z)}_{\pi_{z, \sigma}(z)}=\pi(\theta) \mathcal{N}\left(z ; \sigma^{2} / 2 ; \sigma^{2}\right) .
$$

- Aim: Minimize the computational cost

$$
C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N.

Aim of the Analysis

- Simplifying Assumption: The noise Z is independent of θ and Gaussian; i.e. $Z \sim \mathcal{N}\left(-\sigma^{2} / 2 ; \sigma^{2}\right)$:

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\sigma}(z)}_{\pi_{z, \sigma}(z)}=\pi(\theta) \mathcal{N}\left(z ; \sigma^{2} / 2 ; \sigma^{2}\right) .
$$

- Aim: Minimize the computational cost

$$
C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N.

- Special cases:

Aim of the Analysis

- Simplifying Assumption: The noise Z is independent of θ and Gaussian; i.e. $Z \sim \mathcal{N}\left(-\sigma^{2} / 2 ; \sigma^{2}\right)$:

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\sigma}(z)}_{\pi_{z, \sigma}(z)}=\pi(\theta) \mathcal{N}\left(z ; \sigma^{2} / 2 ; \sigma^{2}\right)
$$

- Aim: Minimize the computational cost

$$
C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N.

- Special cases:
(1) When $q(\vartheta \mid \theta)=p(\vartheta \mid y), \sigma_{\text {opt }}=0.92$ (Pitt et al., 2012).

Aim of the Analysis

- Simplifying Assumption: The noise Z is independent of θ and Gaussian; i.e. $Z \sim \mathcal{N}\left(-\sigma^{2} / 2 ; \sigma^{2}\right)$:

$$
\bar{\pi}(\theta, z)=\pi(\theta) \underbrace{\exp (z) g_{\sigma}(z)}_{\pi_{z, \sigma}(z)}=\pi(\theta) \mathcal{N}\left(z ; \sigma^{2} / 2 ; \sigma^{2}\right) .
$$

- Aim: Minimize the computational cost

$$
C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N.

- Special cases:
(1) When $q(\vartheta \mid \theta)=p(\vartheta \mid y), \sigma_{\text {opt }}=0.92$ (Pitt et al., 2012).
(2) When $\pi(\theta)=\prod_{i=1}^{d} f\left(\theta_{i}\right)$ and $q(\vartheta \mid \theta)$ is an isotropic Gaussian random walk then, as $d \rightarrow \infty, \sigma_{\text {opt }}=1.81$ (Sherlock, Thiery, Roberts \& Rosenthal, 2014).

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- We introduce an auxiliary $\bar{\pi}$-invariant kernel

$$
\begin{aligned}
Q^{*}\{(\theta, z),(d \vartheta, d w)\}= & q(\vartheta \mid \theta) g_{\sigma}(w) \alpha_{\mathrm{EX}}(\theta, \vartheta) \alpha_{\mathrm{Z}}(z, w) d \vartheta d w \\
& +\left\{1-\varrho_{\mathrm{EX}}(\theta) \varrho_{\mathrm{Z}, \sigma}(z)\right\} \delta_{(\theta, z)}(d \vartheta, d w)
\end{aligned}
$$

where

$$
\alpha_{\mathrm{EX}}(\theta, \vartheta)=\min \{1, r(\theta, \vartheta)\}, \quad \alpha_{\mathrm{Z}}(z, w)=\min \{1, \exp (w-z)\}
$$

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- We introduce an auxiliary $\bar{\pi}$-invariant kernel
$Q^{*}\{(\theta, z),(d \vartheta, d w)\}=q(\vartheta \mid \theta) g_{\sigma}(w) \alpha_{\mathrm{EX}}(\theta, \vartheta) \alpha_{\mathrm{Z}}(z, w) d \vartheta d w$

$$
+\left\{1-\varrho_{\mathrm{EX}}(\theta) \varrho_{\mathrm{Z}, \sigma}(z)\right\} \delta_{(\theta, z)}(d \vartheta, d w)
$$

where

$$
\alpha_{\mathrm{EX}}(\theta, \vartheta)=\min \{1, r(\theta, \vartheta)\}, \quad \alpha_{\mathrm{Z}}(z, w)=\min \{1, \exp (w-z)\}
$$

- Peskun's theorem (1973) guarantees that $I F_{h}^{Q}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ so that $C T_{h}^{Q}(\sigma) \leq C T_{h}^{Q^{*}}(\sigma)$.

Sketch of the Analysis

- Let $\left(\theta_{i}, Z_{i}\right)_{i \geq 1}$ be generated by Q^{*}.

Sketch of the Analysis

- Let $\left(\theta_{i}, Z_{i}\right)_{i \geq 1}$ be generated by Q^{*}.
- Denote $\left(\tilde{\theta}_{i}, \widetilde{Z}_{i}\right)_{i \geq 1}$ the accepted proposals and $\left(\tau_{i}\right)_{i \geq 1}$ the associated sojourn times; i.e. $\left(\widetilde{\theta}_{1}, \widetilde{Z}_{1}\right)=\left(\theta_{1}, Z_{1}\right)=\cdots=\left(\theta_{\tau_{1}}, Z_{\tau_{1}}\right)$,

$$
\begin{aligned}
& \left(\widetilde{\theta}_{2}, \widetilde{Z}_{2}\right)=\left(\theta_{\tau_{1+1}}, Z_{\tau_{1}+1}\right)=\cdots=\left(\theta_{\tau_{2}}, Z_{\tau_{2}}\right) \text { and so on where } \\
& \left(\widetilde{\theta}_{i+1}, \widetilde{Z}_{i+1}\right) \neq\left(\widetilde{\theta}_{i}, \widetilde{Z}_{i}\right) \text { a.s. }
\end{aligned}
$$

Sketch of the Analysis

- Let $\left(\theta_{i}, Z_{i}\right)_{i \geq 1}$ be generated by Q^{*}.
- Denote $\left(\widetilde{\theta}_{i}, \tilde{Z}_{i}\right)_{i \geq 1}$ the accepted proposals and $\left(\tau_{i}\right)_{i \geq 1}$ the associated sojourn times; i.e. $\left(\widetilde{\theta}_{1}, \widetilde{Z}_{1}\right)=\left(\theta_{1}, Z_{1}\right)=\cdots=\left(\theta_{\tau_{1}}, Z_{\tau_{1}}\right)$,

$$
\begin{aligned}
& \left(\widetilde{\theta}_{2}, \widetilde{Z}_{2}\right)=\left(\theta_{\tau_{1+1}}, Z_{\tau_{1}+1}\right)=\cdots=\left(\theta_{\tau_{2}}, Z_{\tau_{2}}\right) \text { and so on where } \\
& \left(\widetilde{\theta}_{i+1}, \widetilde{Z}_{i+1}\right) \neq\left(\widetilde{\theta}_{i}, \widetilde{Z}_{i}\right) \text { a.s. }
\end{aligned}
$$

- $I F_{h}^{Q^{*}}(\sigma)$ can be re-expressed in terms of $I F_{h /\left(\varrho_{E X} \varrho_{Z}\right)}^{\widetilde{Q}^{*}}(\sigma)$ where

$$
\begin{aligned}
\widetilde{Q}^{*}\{(\theta, z),(d \vartheta, d w)\} & =\widetilde{Q}^{\mathrm{EX}}(\theta, d \vartheta) \widetilde{Q}_{\sigma}^{\mathrm{Z}}(z, d w) \\
& =\frac{q(d \vartheta \mid \theta) \alpha_{\mathrm{EX}}(\theta, \vartheta)}{\varrho_{\mathrm{EX}}(\theta)} \frac{g_{\sigma}(d w) \alpha_{\mathrm{Z}}(z, w)}{\varrho_{\mathrm{Z}, \sigma}(z)}
\end{aligned}
$$

Main Result

- Proposition: Under weak assumptions, we have $I F_{h}^{Q}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ where

$$
\begin{aligned}
I F_{h}^{Q^{*}}(\sigma)= & 2 \frac{\left\{1+I F_{h}^{\mathrm{EX}}\right\}}{1+I \widetilde{\widetilde{Q}}_{h / \varrho_{\mathrm{EX}}^{\mathrm{EX}}}}\left\{\pi_{\mathrm{Z}, \sigma}\left(1 / \varrho_{\mathrm{Z}, \sigma}\right)-1 / \pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)\right\} \\
& \times \sum_{n=0}^{\infty} \phi_{n}\left(h / \varrho_{\mathrm{EX}}, \widetilde{Q}^{\mathrm{EX}}\right) \phi_{n}\left(1 / \varrho_{\mathrm{Z}}, \widetilde{Q}_{\sigma}^{\mathrm{Z}}\right) \\
& +\frac{1+I F_{h}^{\mathrm{EX}}}{\pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)}-1,
\end{aligned}
$$

where $\phi_{n}(\varphi, P)$ denotes the autocorrelation at lag n under a Markov kernel P.

Main Result

- Proposition: Under weak assumptions, we have $I F_{h}^{Q}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ where

$$
\begin{aligned}
I F_{h}^{Q^{*}}(\sigma)= & 2 \frac{\left\{1+I F_{h}^{\mathrm{EX}}\right\}}{1+I \widetilde{\widetilde{Q}}_{h / \varrho_{\mathrm{EX}}^{\mathrm{EX}}}}\left\{\pi_{\mathrm{Z}, \sigma}\left(1 / \varrho_{\mathrm{Z}, \sigma}\right)-1 / \pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)\right\} \\
& \times \sum_{n=0}^{\infty} \phi_{n}\left(h / \varrho_{\mathrm{EX}}, \widetilde{Q}^{\mathrm{EX}}\right) \phi_{n}\left(1 / \varrho_{\mathrm{Z}}, \widetilde{Q}_{\sigma}^{\mathrm{Z}}\right) \\
& +\frac{1+I F_{h}^{\mathrm{EX}}}{\pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)}-1,
\end{aligned}
$$

where $\phi_{n}(\varphi, P)$ denotes the autocorrelation at lag n under a Markov kernel P.

- This identity allows us to "decouple" the influence of the parameter and of the noise on $I F_{h}^{Q^{*}}(\sigma)$.

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{Q}(\sigma)}{I F_{h}^{E X}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \leq \frac{1}{2}\left(1+\frac{1}{I F_{h}^{E X}}\right) \pi_{\mathrm{Z}, \sigma}\left(1 / \varrho_{\mathrm{Z}, \sigma}\right)-\frac{1}{I F_{h}^{E X}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{Q}(\sigma)}{I F_{h}^{E X}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \leq \frac{1}{2}\left(1+\frac{1}{I F_{h}^{E X}}\right) \pi_{Z, \sigma}\left(1 / \varrho_{Z, \sigma}\right)-\frac{1}{I F_{h}^{E X}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

- As $I F_{J, h / \rho_{\text {EX }}}^{\mathrm{EX}} \rightarrow \infty$,

$$
\frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \rightarrow \frac{1}{\pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)}
$$

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{Q}(\sigma)}{I F_{h}^{E X}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \leq \frac{1}{2}\left(1+\frac{1}{I F_{h}^{E X}}\right) \pi_{Z, \sigma}\left(1 / \varrho_{Z, \sigma}\right)-\frac{1}{I F_{h}^{E X}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

- As $I F_{J, h / \rho_{\text {EX }}}^{\mathrm{EX}} \rightarrow \infty$,

$$
\frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \rightarrow \frac{1}{\pi_{\mathrm{Z}, \sigma}\left(\varrho_{\mathrm{Z}, \sigma}\right)}
$$

- Results used to minimize w.r.t σ upper bounds on $C T_{h}^{Q}(\sigma)=I F_{h}^{Q}(\sigma) / \sigma^{2}$.

Bounds on Relative Computational Costs

Figure: Bounds on $I F_{h}^{Q}(\sigma) /\left(\sigma^{2} I F_{h}^{\text {EX }}\right)$

Practical Guidelines

- For good proposals, select $\sigma \approx 1$ whereas for poor proposals, select $\sigma \approx 1.7$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,

Practical Guidelines

- For good proposals, select $\sigma \approx 1$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.
(2) If $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1$, computing time increases by $\approx 50 \%$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.
(2) If $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1$, computing time increases by $\approx 50 \%$.
(3) If $\sigma_{\text {opt }}=1$ or $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1.2$, computing time increases by $\approx 15 \%$.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right), \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right), \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right) \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right) \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.
- N is selected so as to obtain $\sigma(\bar{\theta}) \approx$ constant where $\bar{\theta}$ posterior mean.

Empirical vs Asymptotic Distribution of Log-Likelihood Estimator

Empirical distribution of Z at posterior mean (left) and marginalized over samples from $\pi q(\vartheta)=\int \pi(\theta) q(\theta, \vartheta) d \theta$.

Relative Inefficiency and Computing Time

Figure: From left to right: $R C T_{h}^{Q}$ vs $N, R C T_{h}^{Q}$ vs $\sigma(\bar{\theta}), R I F_{h}^{Q}$ against N and $R I F_{h}^{Q}$ against $\sigma(\bar{\theta})$ for various values of ρ and different parameters.

Discussion

- Simplified quantitative analysis of the particle MH algorithm.

Discussion

- Simplified quantitative analysis of the particle MH algorithm.
- Particle MH scales roughly in $O\left(T^{2}\right)$.

Discussion

- Simplified quantitative analysis of the particle MH algorithm.
- Particle MH scales roughly in $O\left(T^{2}\right)$.
- Particle Gibbs sampling displays better theoretical properties: scaling?

