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Motivation and application examples

Consider a channel or a filter,

s(t) = e ∗ h(t) =

∫
e(t − τ)h(τ)dτ

Or equivalently by Fourier transform,

=⇒
H(ω) =

∫
eιωth(t)dt h(t) =

N∑
k=1

akδt−τk
e iθk ,

But real world is random and (h(t), t ≥ 0) is
considered as a stochastic process

=⇒ A harmonizable process

H(ω) =

∫
eιωtdξ(t)

(ξt) (resp dξ(.) ) is heavy tailed process (resp. random measure)
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Why α-stables?

Theoretical interest

It is an extension of gaussian distributions and
processes (case α = 2)

The convolution stability: a combination of i.i.d
stable variables is a stable one

The central limit theorem: α-stable distributions
are the only possible limit distribution for
normalized sum of random variables.

It is a parametric family having only 4 parameters
(tail index α, scale, location and skewness
parameters)

Practical modelings

Heavier tail with the decrease of α.

α-stables take into account extreme values
usually seen as outliers for Gaussians.

α-stable are better models the high variability
phenomena (infinite variance, impulsive
signals...).
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The aim of the talk

Let us consider a stochastic integral:

Xt =

∫
f (t, λ)dξ(λ),

where ξ is an α-stable stochastic process,

We focus here on the symmetric case (SαS process)

How to characterize this process with a spectral bi-measure? =⇒ spectral representation

Given a characteristic bi-measure, how to generate the process from it.=⇒ Lepage series expansions

We Focus on the particular case of harmonisable processes (f (t, λ) = eιtλ)

In this case how the bimeasure is linked to the dependance structure of the process.

Given observations how to estimate this bi-measure.

Prove that it is a natural model for the communication channel.

What is the physical interpretation of the spectral measure in this case.
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α-stable variables

1 A random variable X is said stable (or have a stable distribution) if and only if for any positive real A and
B their exist a unique positive C and real D s.t:

AX1 + BX2 =d CX + D

X1 and X2 i.i.d copies of X (in the symmetric case D=0)
2 It was shown that in this cas there exist a unique 0 ≤ α ≤ 2 such that C is given by

Aα + Bα = Cα

Hence the prefix α
3 the characteristic function of Symmetric α-stable variables (SαS) is given by:

φ
X

(θ) = IE [eıθX ] = e−σ
α|θ|α where 0 < α ≤ 2 and σ > 0.

4 Unfortunately the form of the characteristic function suggest that the density function of these
distribution is impossible to calculate except for three special cases (α = 1, 2, or 1

2 )

Azzaoui et al... Bi-measures, spectral representation...
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α-stable random vectors

1 A random vector X = (X1, . . . ,Xd ) is α-stable SαS if for every A and B positives, their exist C > 0 such
that:

AX (1) + BX (2) d
= CX ,

where X (1) and X (2) are i.i.d. copies of X and Aα + Bα = Cα

2 equivalently we can show that the vector X is symmetric α-stable if and only if every linear combinaison

Y =
d∑

k=1

bkXk is a an SαS univariate variable.

3 The Characteristic function of an SαS real vector X
(d)

= (X1, . . . ,Xd ) is given by:

φ
X

(θ1 , . . . , θd
) = exp{−

∫
Sd

|θ1s1 + · · ·+ θ
d
s
d
|αdΓ

X
(d)

(s1 , . . . , sd )}

where Γ
X

(d)
is a unique positive finite measure on the unit sphere of Rd

4 Complexe random variables and vectors: X = X1 + ı.X2 est α-stable if and only iff the vector (X1,X2) is
α-stable on R2. More generally a vector (X1, . . . ,Xd ) with Xj = X 1

j + ı.X 2
j , is α-stable if and only if

(X 1
1 ,X

2
1 , . . . ,X

1
d ,X

2
d ) is α-stable vector on R2d .

5 A complexe SαS, X = X1 + ı.X2 is said isotropic (rotationally invariant) if for any φ ∈ [0, 2π[

X
d
= eıφ.X .

Azzaoui et al... Bi-measures, spectral representation...
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α-stable processes, SαS random measures

1 A stochastic process ξ = (ξt , t ∈ R) is symmetric if and only if its finite dimensional distributions are
SαS vectors.

2 An SαS random measure is a random set function dξ : B(R) 7−→ R( or C) such that, for any Borel sets
A1, . . . ,An, the vector (dξ(A1), . . . , dξ(An)) is an SαS random vector

3 A random measure dξ is said independently scattered if for any disjoint Borel sets A1, . . . ,An the
variables dξ(A1), . . . , dξ(An) are independents.

Azzaoui et al... Bi-measures, spectral representation...
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Dependence structure: the covariation

Let X = (X1,X2) jointly SαS vector with corresponding measure on the sphere Γ, the covariation of X1
on X2 is defined by :

[X1,X2]α =

∫
S2

s1.(s2)<α−1>dΓ(s1, s2)

where s<β> = sign(s).|s|β

In case where X = (X 1,X 2) is complex i.e. X 1 = X 1
1 + ıX 1

2 and X 2 = X 2
1 + ıX 2

2 , then the covariation
of X 1 on X 2 is :

[X 1,X 2]α =

∫
S4

(s1
1 + ıs1

2 ).(s2
1 + ıs2

2 )<α−1>dΓX (s1
1 , s

1
2 , s

2
1 , s

2
2 )

and the notation z<β> = |z|β−1z .

A useful result: For any SαS vector X on Rd with spectral measure ΓX then,[
d∑

i=1

aiXi ,
d∑

i=1

biXi

]
α

=

∫
Sd

(
d∑

i=1

ai s
i

)
.

(
d∑

i=1

bi s
i

)<α−1>

dΓX (s1, . . . , sd )
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Properties of the covariation

1 Linearity with respect to the first component i.e. for any SαS vector (X1,X2,Y ) we have,
[X1 + X2,Y ]α = [X1,Y ]α + [X2,Y ]α.

2 if X and Y are independent jointly SαS variables, then [X ,Y ]α = 0. the inverse is not true in general
3 the covariation is additive with respect to its second component, [X ,Y1 + Y2]α = [X ,Y1]α + [X ,Y2]α

if Y1 and Y2 are independents.
4 for any real or complexe a and b, [a.X , b.Y ]α = ab<α−1>[X ,Y ]α.
5 Let X = (Xt)t an SαS process and denote l(X ) the space of finite linear combinations of X . The

application,

‖.‖α :
l(X ) −→ R+

Y 7−→ ‖Y ‖α , ([Y ,Y ]α)
1
α

is a norm covariation norm. In this case (l(X ), ‖.‖α) is a Banach space
6 In (l(X ), ‖.‖α), the covariation is continuous moreover we have:

|[Z1,Z2]α − [Z1,Z3]α| ≤ 2‖Z1‖α.‖Z2 − Z3‖α−1
α .
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Second order processes - the stationary case

Let r(t) be the covariance function of a second order stationary process Xt ,

r(t) is positive definite
n∑

i=1

n∑
j=1

cic j r(ti − tj ) ≥ 0

⇐⇒
Bochner’s Th. r(t) =

∫ ∞
−∞

eıtλF (dλ)

F is a positive measure

⇐⇒Cramer-Kolmogorov Xt =

∫ ∞
−∞

eıtλdξ(λ)

ξ have orthogonal increments

Azzaoui et al... Bi-measures, spectral representation...
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Second ordre - non stationary case

now the covariance is bivariate r(s, t) and

the cov. is bilinear

positive definite

=⇒ F (A,B) = cov(ξ(A), ξ(B))

F positive definite bi-measure

⇐⇒Cramer-Rao Xt =

∫ ∞
−∞

f (t, λ)dξ(λ)

r(s, t) =

∫ ∫
f (s, λ)f (t, λ′ )F (dλ, dλ′ )

The bimeasure F is positive definite in the sense,

n∑
i=1

n∑
j=1

cic jF (Ai ,Aj) ≥ 0,

Azzaoui et al... Bi-measures, spectral representation...
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α-stable independent increments case

ξ have independent increments

i.e. if A ∩ B = ∅ then dξ(A) inndep. dξ(B) =⇒
Add. of the covariation µ(.) = ‖ξ(.)‖αα pos. measure

of Lebesgue-Stieljes

⇐⇒Cambanis-Miller Xt =

∫ ∞
−∞

f (t, λ)dξ(λ)

ξ is independent increments

In this case the covariation verify:

[Xs ,Xt ]
α

=

∫
f (s, λ)(f (t, λ))

<α−1>
µ(dλ)

and for the harmonisable case:

[Xs ,Xt ]
α

=

∫
eıλ(s−t)µ(dλ)

Azzaoui et al... Bi-measures, spectral representation...
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=

∫
f (s, λ)(f (t, λ))

<α−1>
µ(dλ)

and for the harmonisable case:

[Xs ,Xt ]
α

=

∫
eıλ(s−t)µ(dλ)
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Motivation and application examples
Overview on α-stable variables and processes

Spectral representation: extending the Camabanis-Miller representation

The idea: replace the Camabnis-Miller spectral representation by one similar to Cramer-Rao spectral
representation

=⇒ relax the independently scattered condition of the SαS measure.

=⇒ find a weaker condition for the additivity of the covariation

How to? Define a bimeasure from the covariation using the additivity

=⇒ Show that this bimeasure characterises the studied process.

=⇒ prove the Cramer-Rao type representation.

Go further? Apply this to harmonisable processes
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Spectral representation Additivity of the covariation
The spectral representation

The covariation additivity condition

Théorème
For the covariation to be additive with respect to its second variable i.e. ∀i ∈ {1, .., d}, ∀θ1, ..., θd ∈ C:

[Xi , θ1X1 + ...+ θdXd ]
α

= [Xi , θ1X1]
α

+ ...+ [Xi , θdXd ]
α
,

it suffices that for all i , j and k ∈ {1, ..., d}

∀θ1, ..., θd ∈ R,
∂3φ

∂θi∂θj∂θk
(θ1, ...θd ) = 0. (1)

where φ is the Fourier transform of ΓX

Examples:
Independent variables verify this conditions

φ(θ1, . . . , θd ) = a1 cos(θ1) + · · ·+ a1 sin(θ1)

A more general example:

φ(θ1, ..., θd ) =
d∑

i 6=j=1

ϕi,j(θi , θj)

where ϕi,j are characteristic functions of finite measures on Sd .
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Spectral representation Additivity of the covariation
The spectral representation

Construction of the bimeasure

Let us come back to the random measure dξ

Definition

Condition (O):
we will say that it verifies the additivity condition if for all n ≥ 2 and all disjoints Borelian sets {A1, ...,An} the
SαS vector (dξ(A1), ..., dξ(An)) verify the condition (1).

Let us now consider the set function F defined on B(R)× B(R) by :

F :
B(R)× B(R) −→ C
(A,B) 7−→ [dξ(A), dξ(B)]α

(2)

F is additive with respect to its two variables:it is a bimeasure.
For the second variable, if B1 and B2 two distinct Borel Sets,

F(A,B1 ∪ B2) = [dξ(A), dξ(B1 ∪ B2)]α = [dξ(A), dξ(B1) + dξ(B2)]α (3)

Since dξ satisfy the condition (O) then,

[dξ(A), dξ(B1) + dξ(B2)]α = [dξ(A), dξ(B1)]α + [dξ(A), dξ(B2)]α = F(A,B1) + F(A,B2).
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Spectral representation Additivity of the covariation
The spectral representation

the bimeasure F defined in (2) verifies a similar positive definitness property: for all complex z1, . . . , zn and for
all distinct Borel sets A1, . . . ,An , we have:

n∑
i=1

n∑
j=1

zi(zj)
<α−1>F(Ai,Aj) ≥ 0. (4)

the proof of this property is easy. It suffices to use the condition (O). Indeed,

n∑
i=1

n∑
j=1

zi(zj)
<α−1>F(Ai,Aj) =

n∑
i=1

n∑
j=1

zi(zj)
<α−1>[dξ(Ai), dξ(Aj)]α

=

[
n∑

i=1

zidξ(Ai),
n∑

i=1

zidξ(Ai)

]
α

=

∥∥∥∥∥
n∑

i=1

zidξ(Ai)

∥∥∥∥∥
α

α

≥ 0
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Spectral representation Additivity of the covariation
The spectral representation

Some theoritical aspects...

Let’s consider ν : A 7−→ ν(A) = E(v(dξ,A)) where v(dξ,A) is the total variation of the random measure dξ.
It is defined, for all borelian A, by :

v(dξ,A) = sup
I finite

{∑
i∈I

|dξ(Ai)|, (Ai)i∈I partition of A

}
(5)

The total variation v(dξ, .) is a positive random measure. The application of expectation is linear and
continuous, we deduce then that νis a positive measure.
Since dξ is with bounded variation then ν a bounded measure. With respect to this measure ν, we consider the
norm of L1(ν) of a complex function f defined by,

N(f) =

∫
R
|f|dν

We denote by Λα(dξ) the completion, with respect to the norm N
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The spectral representation

Some theoritical aspects...

For purpose of constructing the covariation spectral representation we need the next result that ensure the
convergence theorems

Proposition

Suppose that dξ satisfy the condition (O), then we have the next properties:
1 For all A ∈ B(R) we have , ‖dξ(A)‖α ≤ Ψα(1).ν(A) where Ψα(p) is equal to 1

Sα(p)
when ξ is real and

is equal to 1
S̃α(p)

in the complex case. The quantities Sα(p) et S̃α(p) depends only on α and p.

2 Let B ∈ B(R) a fix Borel set. If A is set verifying ν(A) = 0 then the total variation variation of the
complex measure FB in A is null , that is v(FB,A) = 0. This result is also true for the measure F̃A(B)
and B fixed.

3 Let B ∈ B(R) be a fix Borel set, then for all bounded function f ∈ Λα(dξ) we have the inequality :

|
∫
R

fdFB| ≤ Ψα(1).‖dξ(B)‖α−1
α

∫
R
|f|dν (6)

4 Let f ∈ Λα(dξ) be a fixed bounded function and note G(B) = Ĩ(f,B). We have the next implication:
(ν(B) = 0 implies v(G,B) = 0).
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The spectral representation

Proposition

Let f and g Two bonded function in Λα(dξ). The covariation of the stochastic integral
∫
R

fdξ on
∫
R

gdξ is

given by: [∫
R

fdξ,
∫
R

gdξ
]
α

=

∫
R

∫
R

f(λ) (g(λ′))<α−1> F(dλ, dλ′). (7)

Proposition

Suppose that ξ is a real or complex isotrope symmetric α-stable process. Then the bimeasure F defined in (2) is
the unique bimeasure characterizing the process X and verifying the integral representation (7).
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