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What is BSS?

• Blind source separation (BSS) is to separate a set of source signals from a set
of mixed signals, without the aid of information (or with very little information)
about the source signals or the mixing process

Cocktail party problem
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Linear mixing system

Instantaneous and noiseless mixing system

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)

x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

x = As, W = A−1, y = Wx

• Goal

– Unknown: A and s
– Reconstruct the source signal via demixing matrix W
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Linear mixing in general

x1(t) = a11s1(t) + a12s2(t) + · · ·+ a1msm(t)

...

xn(t) = an1s1(t) + an2s2(t) + · · ·+ anmsm(t)

• Three conditions in multi-channel source separation

– determined system: n = m
– overdetermined system: n > m
– underdetermined system: n < m

6



Bayesian Source Separation STM 2015, ISM

Single-channel source separation

• BSS is in general highly underdetermined

• Many applications involve single-channel source separation problem (n = 1)
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Applications

• Unsupervised learning in general

– latent component analysis
– data clustering and mining

• Speech separation

– speech enhancement, noise reduction
– teleconferencing, dialogue system
– hands-free human-machine communication

• Music separation

– singing-voice separation
– instrument separation and classification
– sound classification
– auditory scene classification
– music information retrieval

9



Bayesian Source Separation STM 2015, ISM

Challenges in audio source separation

• Microphone array signal processing (Benesty et al., 2008)

– delay-and-sum beamforming
– denoising, dereverberation, localization

• Convolutive mixtures

– frequency-domain BSS (Sawada et al., 2007)

• Room reverberation (Yoshioka et al., 2012)

– teleconferencing, interactive TV, hands-free interface
– distant-talking speech recognition

• Unknown number of sources (Araki et al., 2009)

– sparse source separation
– modeling for direction of arrival
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• Unknown model complexity

– model selection (Fevotte, 2007)
– model uncertainty
– unknown number of bases
– unknown model structure
– improper model assumption
– complicated mixing system

• Heterogeneous environments

– noise contamination
– adverse condition
– nonstationary mixing system (Chien and Hsieh, 2013)
– source is moving
– source replacement
– number of sources is changed

11
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Two categories

• Front-end processing

– adaptive signal processing
– analysis of information on each source
– time-frequency modeling and masking
– identification of mixing system

• Back-end learning

– adaptive machine learning
– only using the information about mixture signals
– model-based approaches
– statistical model for the whole system
– inference and learning from a set of samples
– joint speech separation and recognition (Rennie et al., 2010)

12
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Model-based approach

• Model-based approach aims to incorporate the physical phenomena,
measurements, uncertainties and noises in the form of mathematical models

• This approach is developed in a unified manner through different algorithms,
examples, applications, and case studies

• Main-stream methods are based on the statistical models

• Machine learning provides a wide range of model-based approaches for blind
source separation
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Overview of this talk

• Applications

– speech and music separation
– instrument separation, singing-voice separation

• Separation models

– independent component analysis
– nonstationary Bayesian ICA, online Gaussian process ICA
– nonnegative matrix factorization - Bayesian NMF, group sparse NMF

• Learning algorithms

– Bayesian learning, model regularization, structural learning
– online learning, sparse learning
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Independent component analysis

• ICA (Comon, 1994) is essential for blind source separation

• ICA is applied to separate the mixed signals and find the independent
components

• The demixed components can be grouped into clusters where the intra-cluster
elements are dependent and inter-cluster elements are independent

• ICA provides unsupervised learning approach to acoustic modeling, signal
separation and many others
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Assumptions in ICA

• Three assumptions

– sources are statistically independent
– independent component has non-gaussian distribution
– mixing system is determined, i.e. n = m ⇒ square mixing matrix

Linear noiseless ICA: X = AS

x11 · · · x1t
... . . . ...
xn1 · · · xnt

 =

a11 · · · a1n
... . . . ...
an1 · · · ann

s11 · · · s1t
... . . . ...
sn1 · · · snt
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ICA learning rule

• ICA demixing matrix can be estimated by optimizing an objective or a contrast
function D(X,W) using a set of samples X = {x1, . . . ,xt} via

– gradient descent algorithm

W(τ+1) = W(τ) − η∂D(X,W(τ))

∂W(τ)

– natural gradient algorithm (Amari, 1998)

W(τ+1) = W(τ) − η∂D(X,W(τ))

∂W(τ)
(W(τ))TW(τ)
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Nonnegative matrix factorization

 ...

...
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Some properties

• NMF (Lee and Seung, 1999) conducts the parts-based representation

– only additive combinations are allowed
– only a few components are active to encode input data
– sparsity constraint is imposed

• Nonnegative constraint is imposed to reflect a wide range of nature signals

– pixel intensities, amplitude spectra, occurrence counts and many others

• NMF does not assume independent sources

• NMF has been popular for single-channel source separation
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NMF representation

• NMF aims to decompose the nonnegative data matrix X ∈ RM×N+ into a

product of a nonnegative basis matrix B ∈ RM×K+ and a nonnegative weight

matrix W = AT = [a1, . . . ,aK]T ∈ RK×N+

X ≈ BW = BAT =
∑
k

bk ◦ ak ⇒ Xmn ≈ [BW]mn =
∑
k

BmkWkn

• Bilinear NMF: sum of linear combination of rank-one nonnegative matrices

X

b1

¼ + + ¢ ¢ ¢+

M £N

aT
1

b2

aT
2

bK

aT
K
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NMF objective function

• Squared Euclidean distance ⇒ EU-NMF

DEU(X‖BW) =
∑
m,n

(Xmn − [BW]mn)
2

• Kullback-Leibler divergence ⇒ KL-NMF

DKL(X‖BW) =
∑
m,n

(
Xmn log

Xmn

[BW]mn
+ [BW]mn −Xmn

)

• Itakura-Saito distance ⇒ IS-NMF

DIS(X‖BW) =
∑
m,n

(
Xmn

[BW]mn
− log

Xmn

[BW]mn
− 1

)
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Sparsity constraint

• Only a few components are active to handle overcomplete problem

• Objective function with sparsity constraint (Hoyer, 2004)

min
B,W≥0

D(X‖BW) + λg(W)

where g(·) is a penalty function for sparsity control and λ is a regularization
parameter
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Why nonnegativity and sparsity constraints?

• Many real-word data are nonnegative and the corresponding hidden
components have physical meaning only with nonnegativity

• Sparseness is closely related to feature selection

• Nonnegativity relates to probability distribution

• It is important to seek the trade-off between interpretability and statistical
fidelity
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Multiplicative updating rule

NMF Sparse NMF

squared Euclidean distance B← B� XWT

BWWT B← B� XWT+B�(1(BWWT�B))

BWWT+B�(1(XWT�B))

W←W � BTX
BTBW

W←W � BTX
BTBW+λ

Kullback-Leibler divergence
B← B�

X
BWWT

1WT B← B�
X

BWWT+B�(1(1WT�B))

1WT+B�(1( X
BWWT�B))

W←W � BT X
BW

BT1
W←W � BT X

BW
BT1+λ
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Adaptive Learning Machine

• Bayesian learning

• Sparse learning

• Online learning
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Challenges in model-based approach

• We are facing the challenges of big data

• We need tools for modeling, analyzing, searching, recognizing and
understanding real-world data

• Our modeling tools should

– faithfully represent uncertainty in model structure and its parameters
– reflect noise condition in observed data
– be automated and adaptive
– assure robustness to ill-posed or mismatch condition
– scalable for large data set
– deal with over-estimation or under-estimation

• Uncertainty can be properly expressed by prior distribution or process
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Bayesian source separation

• Real-world blind source separation

– unsupervised learning of source signals and mixing process
– number of sources is unknown
– underdetermined and sparse sources
– dynamic time-varying mixing system
– mixing process is nonstationary

• Why Bayesian? (Fevotte, 2007)

– automatic relevance determination is used to determine the number of
sources

– recursive Bayesian for online tracking of nonstationary conditions
– Gaussian process explore the temporal structure of time-varying sources
– approximate Bayesian inference
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Adaptive Learning Machine

• Bayesian learning

• Sparse learning

• Online learning
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Sparse coding

• Sparse representation is crucial for blind source separation (Li et al., 2014)

• Sparse coding aims to find a sparse measurement based on a set of over-
determined basis vectors

• Basis representation of data x ∈ RD

x = Bw

– basis vectors or dictionary B = [b1, . . . ,bN ]
– sensing weights w ∈ RN
– reconstruction errors ‖x−Bw‖22

• Sensing weights are prone to be sparse in ill-posed conditions

32
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`1-regularized objective function

• Lasso regularization (Tibshirani, 1996) is imposed to fulfill sparse coding via

ŵ = arg min
w

1

2
‖x−Bw‖2 + η‖w‖1

• A relatively small set of relevant bases is selected to represent target data

• Maximum a posteriori (MAP) estimation does the same thing

ŵ = arg min
w
{− log p(x|w)− log p(w)}

– Gaussian likelihood p(x|w) = N (x|Bw, I)
– Laplace prior p(w|η) = η

2 exp(−η‖w‖1)
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Sparse Bayesian learning

• Bayesian sensing aims to yield the error bars or distribution estimates of the
true signals

• Prior density of sensing weights is incorporated

p(w|A) = N (w|0, diag{α−1n }) =

N∏
n=1

N (wn|0, α−1n )

• Automatic relevance determination (ARD) parameter αn reflects how an
observation is relevant to a basis vector (Tipping, 2001)

• If ARD is modeled by a gamma density, the marginal distribution of weights
turns out to be an Student’s t distribution which is a sparse prior
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p(w|a, b) =

N∏
n=1

∫ ∞
0

N (wn|0, α−1n )G(αn|a, b)dαn

∝
N∏
n=1

(b+ w2
n/2)−(a+1/2)

• Sparse Bayesian learning has been popular for model-based BSS
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Adaptive Learning Machine

• Bayesian learning

• Sparse learning

• Online learning
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Online learning

• Online learning is preferred when data becomes available in a sequential mode

• Model is updated in a scalable fashion

• Instead of updating model in batch mode using cost function E =
∑
tEt

from all samples {xt}, the online or stochastic learning using gradient descent
algorithm is performed according to the cost function from a minibatch or an
individual sample Et

wt+1 = wt − η∇Et

• Bayesian theory provides a meaningful solution to uncertainty modeling and
online learning

• Online learning is crucial for nonstationary blind source separation
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Case Study: Independent Component Analysis

• Nonstationary Bayesian ICA

• Online Gaussian process ICA

39



Bayesian Source Separation STM 2015, ISM

Why nonstationary source separation?

• Real-world blind source separation

– number of sources is unknown
– BSS is a dynamic time-varying system
– mixing process is nonstationary

• Why nonstationary?

– Bayesian method using ARD can determine the changing number of sources
– recursive Bayesian for online tracking of nonstationary conditions
– Gaussian process provides a nonparametric solution to represent temporal

structure of time-varying mixing system
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Nonstationary mixing system

• Time-varying mixing matrix is considered to reflect

– moving sources or moving microphones
– source signals may abruptly appear or disappear
– source replacement
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Nonstationary Bayesian (NB) learning

• NB-ICA performs online Bayesian learning from a sequence of online minibatch

training data X (l) = {X(1),X(2), · · · ,X(l)} where X(l) = {x(l)
t }

p(Θ(l)|X (l)) =
p(X(l)|Θ(l))p(Θ(l)|X (l−1))∫

p(X(l)|Θ(l))p(Θ(l)|X (l−1))dΘ(l)

)1( l
Θ

)1( l
Φ

)(l
Θ

)1( l
Θ

)(l
Φ )1( l

Φ

)(l
X )1( l

X
)1( l

X ...

...

...

...

...

...
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Model construction

• Noisy ICA model: xt = Ast + εt

• Likelihood function with time-varying mixing matrix A(l) and source signal s(l)

p(xt|A(l), s(l), β(l)) = N (xt|A(l)s(l), β(l)−1IN)

• Distribution of model parameters

– source p(s(l)|π(l),µ(l),γ(l)) =
∏M
m=1

[∑K
k=1 π

(l)
k N (s

(l)
m |µ(l)

k , γ
(l)−1

k )
]

– mixing matrix p(A(l)|α(l)) =
∏M
m=1

[∏N
n=1N (a

(l)
nm|0, α(l)−1

m )
]

– noise p(εt|β(l)) = N (εt|0, β(l)−1IN)
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Marginal distribution

• Prior distribution

– precision of noise p(β(l)|uβ, wβ) = Gam(β(l)|uβ, wβ)

• Marginal likelihood of NB-ICA model (Chien and Hsieh, 2013)

p(X) =

T∏
t=1

∫
p(xt|A(l), s(l),α(l), β(l))p(A(l)|α(l))p(α(l)|u(l)α , w(l)

α )

×p(s(l)|π(l),µ(l),γ(l))p(β(l)|u(l)β , w
(l)
β )dA(l)ds(l)dα(l)dβ(l)
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Automatic relevance determination

• ARD parameter for source signals

α(l)
m =

{
∞ , a

(l)
m = {a(l)nm} → 0

<∞ , a
(l)
m = {a(l)nm} 6= 0

– number of sources can be determined

47



Bayesian Source Separation STM 2015, ISM

Compensation for nonstationary mixing

• Compensation via transformation parameter

GH(l)(α
(l)) = α(l)H(l)

• Prior for compensation parameter

– conjugate prior using Wishart distribution

p(α(l)
mH(l)

m |ρ(l−1)m ,V(l−1)
m ) ∝ |α(l)

mH(l)
m |(ρ

(l−1)
m −N−1)/2

× exp

[
−1

2
Tr[(V(l−1)

m )−1α(l)
mH(l)

m ]

]
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Graphical representation
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Experiment on BSS

• Experiment on nonstationary blind source separation

– ICA’99 http://sound.media.mit.edu/ica-bench/

• Scenarios

– state of source signals: active or inactive
– source signals or sensors are moving: nonstationary mixing matrix

At =

[
cos(2πf1t) sin(2πf2t)
− sin(2πf1t) cos(2πf2t)

]
where f1 = 1/5 Hz f2 = 1/2.5 Hz

50
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Source signals and ARD curves

Blue: first source signal
Red: second source signal
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Case Study: Independent Component Analysis

• Nonstationary Bayesian ICA

• Online Gaussian process ICA
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Online Gaussian process

• Basic ideas

– incrementally detect the status of source signals and estimate the
corresponding distributions from online observation data X (l) =
{X(1),X(2), · · · ,X(l)}

– dynamic model is required to capture the temporal correlation for source
separation (Smaragdis et al., 2014)

– temporal structure of time-varying mixing coefficients A(l) are characterized
by Gaussian process

– Gaussian process is a nonparametric model which defines the prior
distribution over functions for Bayesian inference

• Online Gaussian process (OLGP) was proposed for blind source separation
(Chien and Hsieh, 2013)
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Gaussian process

• GP is an infinite-dimensional generalization of multivariate normal distribution

• GP was applied to model the source signals for blind source separation (Park
and Choi, 2008)

• Mixing matrix is characterized by OLGP

– A
(l)
t is generated by a latent function f(·)

a
(l)
nm,t = f(a

(l)
nm,t−1) + ε

(l)
nm,t

where a
(l)
nm,t−1 = [a

(l)
nm,t−1, · · · , a

(l)
nm,t−p]

T

– GP is adopted to describe the distribution of latent function

f(a
(l)
nm,t−1) ∼ N (f(a

(l)
nm,t−1)|0, κ(a

(l)
nm,t−1, a

(l)
nm,τ−1))
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– Exponential-quadratic kernel function κ(·) is adaopted

κ(a
(l)
nm,t−1, a

(l)
nm,τ−1) = ξ(l−1)anm exp

[
−λ

(l−1)
anm

2

∥∥∥a(l)nm,t−1 − a
(l)
nm,τ−1

∥∥∥2]

– {λ(l−1)anm , ξ
(l−1)
anm } are hyperparameters of kernel function

• GP prior could be used to represent temporal structure of time-varying source

samples {s(l)m,t} within a frame l

• OLGP-ICA algorithm is implemented by variational inference

55



Bayesian Source Separation STM 2015, ISM

Graphical representation
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Experiment on BSS

• Experiment on nonstationary blind source separation

– http://www.kecl.ntt.co.jp/icl/signal/

• Scenarios

– state of source signals: active or inactive
– source signals or sensors are moving: nonstationary mixing matrix

At =

[
cos(2πf1t) sin(2πf2t)
− sin(2πf1t) cos(2πf2t)

]
where f1 = 1/20 Hz f2 = 1/10 Hz
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Case Study: Nonnegative Matrix Factorization

• Bayesian NMF

• Group sparse NMF
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Why Bayesian NMF?

• Uncertainty modeling helps improving model regularization

• Uncertainties in source separation may come from

– improper model assumption
– incorrect model order
– possible noise interference
– nonstationary environment
– reverberant distortion
– variations of source signals

• Bayesian learning aims to build a robust source separation by maximizing the
marginal likelihood over randomness of model parameters
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Gaussian-Exponential BNMF

• Gaussian likelihood for modeling error (Schmidt et al., 2009)

p(X|B,W, σ2) =
∏
m,n

N (Xmn; [BW]mn, σ
2)

• Exponential prior for B and W

p(B) =
∏
m,k

Exp(Bmk;λ
b
mk), p(W) =

∏
k,n

Exp(Wkn;λwkn)

• Inverse gamma prior for noise variance σ2

p(σ2) = Gam−1(σ2; k, θ)
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Poisson-Gamma BNMF

• Poisson likelihood for X (Cemgil, 2009)

Xmn =
∑
k

Zmkn, Zmkn ∼ Pois(Zmkn;BmkWkn)

p(X|B,W) =
∏
m,n

Pois(Xmn;
∑
k

BmkWkn)

• Gamma prior for B and W

p(Bmk; a
B
mk, b

B
mk) = Gam(Bmk; a

B
mk,

bBmk
bBmk

)

p(Wkn; aWkn, b
W
kn) = Gam(Wkn; aWkn,

bWkn
aWkn

)
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Discussion

• Gibbs sampling for Gaussian-Exponential BNMF

• Variational inference for Poisson-Gamma BNMF

• Drawbacks

– Gibbs sampling in Gaussian-Exponential BNMF and Newton’s solution in
Poisson-Gamma BNMF are computationally expensive

– some dependencies during optimization were ignored
– observations in Gaussian-Exponential BNMF are not constrained to be

nonnegative
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Poisson-Exponential BNMF

• Poisson likelihood for X

Xmn =
∑
k

Zmkn, p(X|B,W) =
∏
m,n

Pois(Xmn;
∑
k

BmkWkn)

• Exponential prior for B and W

p(B) =
∏
m,k

Exp(Bmk;λ
b
mk), p(W) =

∏
k,n

Exp(Wkn;λwkn)

• Marginal likelihood over Z and {B,W} is optimized to find the sparsity-
controlled hyperparameters Θ = {λbmk, λwmk}
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Graphical representation

Wkn

Xmn

Bmk

Zmkn

M

N

K

¸b ¸w

(Yang et al., 2014)
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Variational inference

• Variational distributions are derived in VB-E step as

q(Zm,:,n) ∝ Mult(Zm,:,n;Xmn, Pm,:,n)

q(Bmk) ∝ Gam(Bmk;α
b
mk, β

b
mk)

q(Wkn) ∝ Gam(Wkn;αwkn, β
w
kn)

with variational parameters

α̂
b
mk = 1 +

∑
n

〈Zmkn〉, β̂
b
mk =

(∑
n

〈Wkn〉+ λ
b
mk

)−1

α̂
w
kn = 1 +

∑
m

〈Zmkn〉, β̂
w
kn =

∑
k

〈Bmk〉+ λ
w
kn

−1

P̂mkn =
exp(〈logBmk〉+ 〈logWkn〉)∑
j exp(〈logBmj〉+ 〈logWjn〉)
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VB-M step

• Optimal regularization parameters Θ = {λbmk, λwkn} are derived by maximizing
variational lower bound w.r.t. Θ

λ̂bmk =
1

2

(
−
∑
n

〈Wkn〉+

√
(
∑
n

〈Wkn〉)2 + 4

∑
n〈Wkn〉
〈Bmk〉

)

λ̂wkn =
1

2

(
−
∑
m

〈Bmk〉+

√
(
∑
m

〈Bmk〉)2 + 4

∑
m〈Bmk〉
〈Wkn〉

)
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Supervised source separation
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f
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Experimental setup

• Speech samples from TIMIT corpus

– Randomly select 60 sentences with 3 males and 3 females
– each sentence has a length of 2-3 seconds

• Music samples from Saarland Music Data (SMD)

– select one piano and one violin pieces composed by Bach from the second
collections

• Test signals are generated by corrupting with a randomly selected music
segments at 0 dB speech-to-music ratio (SMR)

• 10-fold cross validation for each speaker

• STFT: 40ms frame duration, 10ms frame shift, 1024-points
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Unsupervised source separation
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(Yang et al., 2014)
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• Experimental data: MIR-1K dataset

– 1000 song clips extracted from 110 Chinese karaoke pop songs performing
by 8 female and 11 male amateurs

– Each clip recorded at 16 KHz sampling frequency with the duration ranging
from 4 to 13 seconds

• SMRs of 5, 0, and -5 dB are investigated

• STFT: 40ms frame duration, 10ms frame shift, 1024-points

• Evaluation measure

NSDR(V̂,V,X) = SDR(V̂,V)− SDR(X,V)

GNSDR(V̂,V,X) =

∑Ñ
n=1 lnNSDR(V̂n,Vn,Xn)∑Ñ

n=1 ln
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Evaluation

• Comparison of GNSDR at SMR = 0 dB using NMF with fixed number of
bases {20, 30, 40, 50} and BNMF with adaptive number of bases

NMF NMF NMF NMF BNMF
(20) (30) (40) (50)

K-means clustering 2.85 2.69 2.58 2.47 2.92
NMF clustering 3.29 3.15 3.13 2.97 3.25

Shifted NMF clustering 3.39 3.26 3.16 3.03 4.01
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Case Study: Nonnegative Matrix Factorization

• Bayesian NMF

• Group sparse NMF
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Group basis representation

• Single-channel music source separation in presence of one rhythmic or repetitive
signal and one harmonic or residual signal (Chien and Hsieh, 2013:18)

– Ar ∈ RN×Dr+ : shared basis matrix for all segments {X(l), l = 1, . . . , L}
– A

(l)
h ∈ R

N×Dh
+ : individual basis matrix for segment X(l)

 )(lX

)( l
hA

)(lE

rD hD

rD

hD

|| DDD hr 

rA
)(l

hA

)(l
rS

)(l
hS

X(l) = ArS
(l)
r +A

(l)
h S

(l)
h + E(l)
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Model construction

• Gaussian likelihood

p(X(l)|Θ(l)) =

N∏
i=1

M∏
k=1

N (X
(l)
ik | [ArS

(l)
r ]ik + [A

(l)
h S

(l)
h ]ik, [Σ

(l)]ii)

• Gamma prior for basis parameter and Laplace prior for weight parameter

p(Ar) =

N∏
i=1

Dr∏
j=1

G([Ar]ij|αrj, βrj), p(A
(l)
h ) =

N∏
i=1

Dh∏
j=1

G([A
(l)
h ]ij|α(l)

hj , β
(l)
hj )

p([S(l)
r ]jk|λ(l)rj ) =

λ
(l)
rj

2
exp{−λ(l)rj [S(l)

r ]jk}
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Graphical representation
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MCMC sampling

• MCMC sampling is developed to sequentially infer parameters Θ(t+1) and
hyperparameters Φ(t+1) at each new iteration t+ 1 according to the posterior
distribution p(Θ,Φ|X)

– Θ(l) = {Ar, A(l)
h , S

(l)
r , S

(l)
h ,Σ(l)}

– Φ(l) = {Φ(l)
a ,Φ

(l)
s }

where Φ
(l)
s = {γ(l)rj , δ

(l)
rj , γ

(l)
hj , δ

(l)
hj} and Φ

(l)
a = {{αrj, βrj}, {α(l)

hj , β
(l)
hj }}

• Nonnegativity constraint is imposed on {Ar, A(l)
h , S

(l)
r , S

(l)
h } during sampling

procedure
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Experiment on music source separation

• Six rhythmic signals and six harmonic signals from http://www.

free-scores.com/index_uk.php3 and http://www.freesound.org/ were
sampled

– “music 1”: bass+piano
– “music 2”: drum+guitar
– “music 3”: drum+violin
– “music 4”: cymbal+organ
– “music 5”: drum+saxophone
– “music 6”: cymbal+singing

• 1,000 Gibbs sampling iterations, 200 burn-in iterations

• Dr = 15 and Dh = 10
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Outline

• Introduction

• Model-Based Source Separation

• Adaptive Learning Machine

• Case Study: Independent Component Analysis

• Case Study: Nonnegative Matrix Factorization

• Summarization and Future Trend
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Summarization

• Advances in machine learning for source separation are surveyed

• Model-based blind source separation

– independent component analysis
– nonnegative matrix factorization

• Adaptive learning machine

– Bayesian learning
– sparse learning
– online learning

84



Bayesian Source Separation STM 2015, ISM

Future Trend

• Source separation versus machine learning

– DNN is powerful for BSS but in-domain signal processing is required
– perceptual objective and measure
– multidisciplinary approach from signal processing and machine learning
– combined separation and classification with discriminative training

• Source separation in heterogeneous conditions

– temporally-correlated sources
– nonstationary mixing condition
– adaptive model complexity
– guided source separation, user interaction, side information (Vincent et al.,

2014)

• Ubiquitous extensions and applications

– multi-modalities, multi-models and multi-ways in source separation
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