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Age distribution of the world’s population

1970 2010 2050
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The world population is getting older fast! Life expectancy 78
years (2010-2015) and 83 years by 2045-2050 in developed regions.
Older persons will outnumber children (0-14 years) soon.

Pressure on the government budgets: in Australia the total
age/service pension payments are $34.8 billion in 2011-12.

Australian superannuation industry is large (and getting larger).
$1.6 tn in assets under management, it is now greater than the
capitalization of the ASX, and greater than the combined deposits of
all Australian banks; exceeds the size of domestic GDP.

Longevity risk (potential risk attached to the increasing life
expectancy of pensioners and policy holders “outliving one’s savings”)
– potential solutions for retirees: purchase “peace of mind” - e.g.
annuities; access home equity - reverse mortgage; rely on government
pension; Continue Working!

CSIRO-Monash superannuation research cluster 2013-:
retirement products (variable annuities with guarantee features),
depletion rates of super balance, longevity risk, life-cycle utility
model, superannuation and economy.

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 5 / 54



Outline

We develop a model to derive loss distributions of annuity portfolios
over one period.

The model is based on extended CreditRisk+.

There exists a numerically stable and fast algorithm to derive loss
distributions and risk measures exactly.

Based on publicly available data we provide estimation procedures,
including MCMC.

The model can also be applied to model life tables and mortality
forecasts.

Stress scenarios can also be tested.

Setup to model new insurance contracts.

This talk is based on draft papers:
Hirz, Schmock and Shevchenko (2015) available on http://arxiv.org/abs/1505.04757

Shevchenko, Hirz and Schmock (2015) to appear in MODSIM 2015 proceedings.
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Mortality modelling

Deterministic survival models for Pr(Tx > t) = exp(−
∫ t
0 µx+sds),

Tx is remaining lifetime of a person aged x and µs is mortality
intensity: Gompertz (1825) µx = Bcx , Makeham (1860)
µx = A + Bcx , Perks (1932) µx = A+Beγx

1+Ceγx ; Thatcher (1999)

A + Beγx

1+Beγx , etc.

Subjective opinions of experts

Stochastic modelling is more recent development (state-space
models, GLM, etc.): benchmark method is Lee–Carter model
(1992), given the number of living people ma,g(t) as well as annual
deaths na,g(t), for age a, gender g and years t ∈ {1, . . . ,T}, the
death rates are modelled as

log q̂a,g(t) = log
na,g(t)

ma,g(t)
= aa,g + κt ba,g + εa,g,t , t ∈ {1, . . . ,T} ,

with independent normal error terms εa,g,t .

Life Tables – point estimators for death probabilities
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Observation I

When applying life tables to annuities, death probabilities have to be
reduced by minimal risk margins to account for longevity (e.g. DAV in
Germany):

Mortality trends: For example, Lee–Carter model.

∼ 7%: Statistical fluctuation.

10%: Parameter risk, structural differences.

15%: Selection risk.

UK, projected life expectancy at birth for males 1966-2031. Office of National Statistics
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Observation II

Australian mortality rates due to different death causes show significant
patterns, also on a short-term scale (1997-2011).
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Goal

Develop a model which derives loss distributions of annuity portfolios
over one period which

takes into account some of the risks mentioned before to account for
longevity,

accounts for changes in rates of different death causes,

accounts for dependence between policyholders,

has a potentially short runtime (not Monte Carlo),

can model any kind of annuity (index-linked, variable annuities),

has the feature of stress testing.

forecast of death rates and death causes
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Extended CreditRisk+ (ECRP)

Collective risk model extended CreditRisk+ (see Schmock (2014), short
ECRP, and CRP (1997)) is able to cover all those attributes, if

default is treated as death .

We know:

ECRP allows an explicit calculation of the loss distribution via a
stable and fast algorithm.

ECRP can be applied to any kind of annuity (index-linked, variable
annuities).

ECRP allows flexible handling of dependence through common
stochastic risk factors.
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Notation and setup

Policyholders 1, . . . ,m.

Death indicators N1, . . . ,Nm ∈ N0 (random variables) where
{Ni = 0} indicates ‘no death’.

Independent stochastic or deterministic annuity payments
X1, . . . ,Xm ∈ N0 (may be multi-dimensional including discounted
actuarial reserve and different lines of business) and annuities which
need not be paid in the case of death Y1, . . . ,Ym ∈ N0, mutually
indep. and indep. of N1, . . . ,Nm.

Total portfolio loss

For i.i.d. copies {Yi ,j}j∈N of Yi , for i ∈ {1, . . . ,m}, derive

L :=
m∑

i=1

Xi −
m∑

i=1

Ni∑

j=1

Yi ,j .
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Death indicator

What assumptions on death indicators Ni in

S :=
m∑

i=1

Ni∑

j=1

Yi ,j ?

In reality, (Ni ) are Bernoulli distributed: Monte Carlo.

If (Ni ) are independently Poisson distributed with mean (λi ), then
Panjer’s recursion can be applied, i.e., for λ :=

∑m
i=1 λi ,

qν :=
∑m

i=1(λi/λ)P(Yi = ν), and P(S = 0) = exp(−λ)

P(S = s) =
λ

s

s∑

ν=1

νqνP(S = s − ν) , s ∈ N0.

If (Ni ) are compound Poisson distributed, then Panjer’s recursion
can still be applied in some cases as in (extended) CreditRisk+.
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Note on basic Panjer recursion

Calculation of distribution of Z = X1 + . . .+ XN , where N is random, is
classical problem of risk theory

Define fk = Pr[Xi = kδ], pk = Pr[N = k], hk = Pr[Z = kδ], with
f0 = 0 and k = 0, 1, . . . . Then

hn =
n∑

k=1

pk f
(k)∗
n , n ≥ 1,

h0 = Pr[Z = 0] = Pr[N = 0] = p0,

where f
(k)∗
n =

∑n
i=0 f

(k−1)∗
n−i fi with f

(0)∗
0 = 1 and f

(0)∗
n = 0 if n ≥ 1.

The number of operations to calculate h0, h1, . . . , hn using
convolutions explicitly is of the order of n3.

If the frequency N belongs to the so-called Panjer classes, calculation
is reduced to a simple recursion introduced by H. Panjer in 1981 and
referred to as Panjer recursion, that required O(n2) operations.
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Note on basic Panjer recursion

Theorem (Panjer recursion)

If the frequency probability mass function pn, n = 0, 1, . . . satisfies

pn =

(
a +

b

n

)
pn−1, for n ≥ 1 and a, b ∈ R,

then it is said to be in Panjer class (a, b, 0) and the compound distribution
satisfies the recursion

hn =
1

1− af0

n∑

j=1

(
a +

bj

n

)
fjhn−j , n ≥ 1,

h0 =
∞∑

k=0

(f0)kpk .

Poisson, Binomial, Negative Binomial belong to Panjer class (a, b, 0).
There are several extensions to Panjer class and Panjer recursion; see
Cruz, Peters and Shevchenko (2015) and Peters and Shevchenko
(2015).
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Multiple deaths

Multiple deaths of a single policyholder can occur when using (compound)
Poisson distributed deaths, but:

Multiple deaths are not a major issue

Since annual death probabilities are small for most ages, multiple
deaths are unlikely.

Multiple deaths is not a major issue for longevity risk modelling.

Approximations using Poisson sums are justified by Poisson
approximation and generalisations of this result (Vellaisamy and
Chaudhuri (1996)).

With proper scaling, we get accurate results (next example).
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Illustrative example

m = 1 000 policyholders with annual death probability q = 0.05.

For policyholder i , let Xi be LogNormal with µ = 4 and σ = 0.5. Let
Ui ∼ U(0, 1] and define Yi := Xi Ui .

Using 10 000 simulations derive S :=
∑m

i=1

∑Ni
j=1 Yi ,j where Yi ,j ∼ Yi , for

Ni being Poisson as well as Bernoulli distributed, both with
P(Ni = 0) = 1− q, i ∈ {1, . . . ,m}.

Bernoulli Poisson

VaR(S)

0.01 1 007.87 1 005.16
0.05 1 174.09 1 170.17
0.15 1 325.84 1 324.91
0.99 2 333.72 2 373.00

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 17 / 54



Annuity model using extended CreditRisk+

Annuity model with risk factors

For all policyholders i ∈ {1, . . . ,m}:
Annual death probability q∗i and set qi := − log(1− q∗i ).

Risk factors Λ1, . . . ,ΛK are independent and have gamma
distributions with mean 1 and variances β1, . . . , βK .

Death indicators are split up Ni = Ni ,0 + Ni ,1 + · · ·+ Ni ,K due to
different risk factors (death causes) with corresponding weights
wi ,0, . . . ,wi ,K ≥ 0 such that wi ,0 + · · ·+ wi ,K = 1.

Ni ,0 is independent of everything else, L(Ni ,0) = Poi(qi wi ,0).

(Ni ,k)i ,k are conditionally independent given Λ1, . . . ,ΛK and they
have a compound Poisson distribution

L(Ni ,k |Λ1, . . . ,ΛK ) = L(Ni ,k |Λk) = Poi(qi wi ,k Λk)
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Interpretation and comments on the annuity model

Risk factors Λ1, . . . ,ΛK represent causes of death such as
neoplasms, cardiovascular diseases or idiosyncratic components. The
variation in this risk factors represents unexpected improvement in
medication or outbursts of epidemics, etc.

E.g., a low value of the risk factor for neoplasms Λk reduces the
Poisson intensity in Poi(qi wi ,k Λk) and implies reduced death
probability which may be the case if a new cancer treatment is
available.

The weights wi ,k indicate how vulnerable policyholder i is to risk
factor Λk .

General case of extended CreditRisk+ can be used to model risk
groups with simultaneous deaths of policyholders in the group
(e.g. couple dies in a car crash, people living near a vulcan, virus
outbreaks), further dependence (negative and positive) between
death causes can be introduced via linear structure
Λc = ac,0 + ac,1R1 + · · ·+ ac,KRK where Rk ∼ Gamma(αk , βk).
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Moments of Ni ,k

Given the annuity model with K non-idiosyncratic risk factors, let
k ∈ {1, . . . ,K} and consider policyholder i ∈ {1, . . . ,m}. Then, for the
number of deaths Ni ,k due to risk factor Λk we have

E[Ni ,k ] = E[E[Ni ,k |Λk ]] = E[qi wi ,k Λk ] = qi wi ,k ,

Var(Ni ,k) = E[Var(Ni ,k |Λk)] + Var(E[Ni ,k |Λk ])

= qi wi ,k(1 + qi wi ,kβk) .

Analogously, for all i , j ∈ {1, . . . ,m} with i 6= j ,

Cov(Ni ,k ,Nj ,k) = E[Cov(Ni ,k ,Nj ,k |Λk)] + Cov(E[Ni ,k |Λk ] ,E[Nj ,k |Λk ])

= qi qj wi ,k wj ,kβk .
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Algorithm for (extended) CreditRisk+

For S =
∑m

i=1

∑Ni
j=1 Yi ,j the algorithm is given by

P(S = ν) =
λ

ν

ν∑

n=1

ncnP(S = ν − n) , ν ∈ N ,

where P(S = 0) = exp
(
λ(c0 − 1)

)
with λ, c0 ∈ R and

cν = f (b1,ν , . . . , bK ,ν) , ν ∈ N0 ,

where, for all k ∈ {1, . . . ,K}, bk,0 ∈ R and

bk,ν = gν(bk,1, . . . , bk,ν−1) , ν ∈ N0 ,

with some functions g1, g2, . . . , f .

Idea of proof: Deriving the probability-generating function of S for all
z ∈ C with ‖z‖∞ ≤ 1 gives

E
[
zS
]

=
∑

ν∈N0

P(S = ν)zν = exp
(
λ(ϕ̃(z)− 1)

)
, (1)

where ϕ̃(z) =
∑

ν∈N0
cνzν . The form of the probability-generating

function implies that S is a Poisson sum, see Schmock (2014).
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Available data

Historical data of annual number of deaths na,g,k(t) ∈ N0 categorised
by age a ∈ {1, . . . ,A}, gender g ∈ {f ,m} and death cause
k ∈ {0, . . . ,K} for years t ∈ {1, . . . ,T}.
For Australia: Long-term data for 18 age groups, both genders with
19 death causes available.

Corresponding historical population counts ma,g(t).

Data and model linkage

na,g,k(t) correspond to realisations of the random variable

Na,g,k(t) :=

ma,g(t)∑

i=1

Ni ,k(t) ,
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Assumptions for estimation

Simplifying assumptions for consistent estimation

Additionally assume the following:

Weights and death probabilities are the same within each age
category and gender.

Risk factor variances β1, . . . , βK are constant over the years.

All random variables are independent for different points in time.

Over short periods
trends in death probabilities take the form

log qa,g(t) = aa,g + (T − t)ba,g ,

and trends in weights

wa,g,k(t) = ca,g,k + (T − t)da,g,k .
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Modelling trends over long time

Death probabilities: qa,g (t) = FLap
(
αa,g + βa,g Tζa,g ,ηa,g (t)

)
,

where αa,g , βa,g , ζa,g ∈ R and ηa,g ∈ (0,∞)

Weights: wa,g ,k(t) =
exp
(
ua,g+va,g Tφk ,ψk (t)

)
∑K

j=0 exp
(
ua,g,j+va,g,jTφj ,ψj (t)

) ,
with ua,g ,0, va,g ,0, φ0, ..., ua,g ,K , va,g ,K , φK ∈ R, ψ0, ..., ψK ∈ (0,∞).

FLap(x) is Laplace distribution with mean one and variance two

FLap(x) =
1

2
+

1

2
sign(x)

(
1− exp(−|x |)

)
, x ∈ R ,

For x < 0, FLap(x) = exp(x)/2.

Trend reduction with parameters (ζ, η) ∈ R× (0,∞) is given by

Tζ,η(t) =
1

η
arctan(ζ + η t) , t ∈ R .

Note, limx→±∞ arctan(x) = ±π
2

and η gives the inverse of time when an initial
trend is halved.
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Estimation procedures

Using these assumptions, we can develop several estimation approaches:

Matching of moments: Easy to calculate and reasonably accurate.

Maximum a posteriori: MAP-function is given explicitly but
numerical deterministic optimisation is problematic (362 parameters).
Risk factor realisations can be estimated (stress testing) and handy
approximations can be derived.

Maximum likelihood: ML-function is given explicitly but numerical
optimisation is hard (362 parameters).

Markov chain Monte Carlo: Based on likelihood function, switching
to a Bayesian setting, parameters can be estimated accurately. This
approach is slow but provides the feature of posterior densities of
parameters.
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Estimation procedures

Lemma (The maximum a posteriori approach)

For k ∈ {1, . . . ,K} and t ∈ {1, . . . ,T}, given the posterior density
π(β, a,b, c,d,λ |n) ∝ π(n|β, a,b, c,d,λ)π(λ|β, a,b, c,d)π(β, a,b, c,d)
from the maximum a posteriori approach, we get by taking partial
derivatives

λ̂k(t) =
1/β̂MAP

k − 1 +
∑A

a=1

∑
g∈{f,m} na,g,k(t)

1/β̂MAP
k +

∑A
a=1

∑
g∈{f,m} ρa,g,k(t)

as well as

log β̂MAP
k +

Γ′
(
1/β̂MAP

k

)

Γ
(
1/β̂MAP

k

) =
1

T

T∑

t=1

(
1 + log λ̂k(t)− λ̂k(t)

)
,

where for given λ̂k(1), . . . , λ̂k(T ) > 0, the latter equation has a unique
positive solution.
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Likelihood function

`n =
T∏

t=1

(( A∏

a=1

∏

g∈{f,m}

e−ρa,g,0(t)ρa,g,0(t)na,g,0(t)

na,g,k(t)!

)

×
K∏

k=1

(
Γ(1/βk + nk(t))

Γ(1/βk)β
1/βk
k (1/βk + ρk(t))1/βk+nk (t)

×
A∏

a=1

∏

g∈{f,m}

ρa,g,k(t)na,g,k (t)

na,g,k(t)!

))

where, nk(t) :=
∑A

a=1

∑
g∈{f,m} na,g,k(t), as well as

ρa,g,k(t) := ma,g(t)qa,g(t)wa,g,k(t) and ρk(t) :=
∑A

a=1

∑
g∈{f,m} ρa,g,k(t).
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Illustration example setup

Periods t ∈ {1, . . . , 10}.
Two age categories (a1, a2) with 10 000 policyholders each and one
gender g.

Annual death probabilities between 0.005 and 0.1.

Two non-idiosyncratic risk factors Λ1,Λ2 with variances β1 = 0.05
and β2 = 0.2.

Weights wa1,g,1 = 0.1, wa2,g,1 = 0.2, wa1,g,2 = 0.3 and wa2,g,2 = 0.4
which are assumed to be constant over time.

Number of deaths na,g,k(t) are then generated via simulated risk factor
realisations (λ1(t), λ2(t))t∈{1,...,10} and simulation of Poisson distributions
with parameters pai ,gwai ,g,j λj(t).
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Estimation results

Using all direct estimation procedures as well as MCMC (Random walk
Metropolis–Hastings within Gibbs) for the maximum a posteriori approach
we get the following:

β1 β2 ca2,g,1 da2,g,1

true 0.050 0.200 0.200 0.000
MM 0.054 0.267 0.161 0.003

MAP 0.015 0.218 0.158 0.003
MLE 0.032 0.215 0.152 0.006

MAP MCMC single β1 β2 ca2,g,1 da2,g,1

mode 0.020 0.297 0.148 0.004
mean 0.084 0.377 0.164 0.004

5% quantile 0.025 0.152 0.125 -0.004
95% quantile 0.210 0.793 0.202 0.013

standard error 0.216% 0.441% 0.119% 0.027%
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Estimation results: risk factor realisations

Estimates for risk factor realisations and true values.
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Real-world example: setup

Australian death and population data

Periods t ∈ {1997, . . . , 2011}.
Eight age categories 50–54 years,. . . , 80-84 years and 85+ for each
gender.

Ten non-idiosyncratic risk factors (death causes) Λ1, . . . ,Λ10.

In this setting optimisation over 362 parameters is required.

Using the extended CreditRisk+ setup with log-linear trends for death
probabilities and linear trends for weights, we estimate the model via
matching of moments and MCMC (random walk Metropolis–Hastings
within Gibbs) with 20 000 steps.
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Lee–Carter model vs. our annuity model

Given the number of living people ma,g(t) as well as annual deaths
na,g(t), for age a, gender g and years t ∈ {1, . . . ,T}, the Lee–Carter
model models death rates q̂a,g(t) := na,g(t)/ma,g(t) as

log q̂a,g(t) = aa,g + κt ba,g + εa,g,t , εa,g,t ∼ N(0, σ2ε ),

with independent normal error terms εa,g,t .
Using a suitable normalisations, e.g.∑

κt = 0,
∑

βa,g = 1

âa,g, b̂a,g and (κ̂t)t∈{1,...,T} are derived via method of moments and
singular value decompositions

âa,g =
1

T

∑

t

log q̂a,g(t)

and β̂ is 1st left and κ̂t is 1st right singular vectors in SVD of matrix
log q̂a,g(t)− âa,g.
Then process for κt is estimated

κt = κt−1 + θ + ωt , ωt ∼ N(0, σ2ω)
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Lee–Carter model: extensions

Multi-factor model extensions, e.g.

log q̂a,g(t) = aa,g + κ
(1)
t b(1)

a,g + +κ
(2)
t b(2)

a,g + εa,g,t , εa,g,t ∼ N(0, σ2ε ),

Cohort effects

log q̂a,g(t) = aa,g + κ
(1)
t b(1)

a,g + +κ
(2)
t−ab(2)

a,g + εa,g,t , εa,g,t ∼ N(0, σ2ε ),

State-space estimation: Lee-Carter model is Gaussian state-space
model and can be estimated using Kalman filter; Gibbs sampler can
be derived for Lee Carter models and SMC can be developed for
non-Gaussian extensions such as stochastic volatility, Fung, Peters
and Shevchenko (2015).
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Lee–Carter model vs. our annuity model

Consider our annuity model with one common risk factor Λ1(t) and
weights wa,g,1(t) = 1, for all t ∈ {1, . . . ,T}. Then, we expect

qLC
a,g (t) ≈ qMAP

a,g (t)λMAP
1 (t) , t ∈ {1, . . . ,T} .
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Estimation results: Weights and changes

Estimated weights and corresponding linear trends for different death
causes using MCMC posterior mean estimates for males 50–54 years (left)
and 80–84 years (right).

Weight Shift Weight Shift

Infectious & parasitic 2.86% 3.56% 1.38% 0.85%
Neoplasms 36.09% -0.66% 32.23% 1.45%

Endocrine & nutritional 3.35% -0.73% 4.64% 2.65%
Mental and behavioural 1.49% 1.72% 4.29% 4.79%

Nervous system 2.83% 1.43% 4.65% 2.66%
Circulatory 23.65% -1.60% 32.13% -3.15%

Respiratory system 3.55% 1.18% 10.61% -0.27%
Digestive system 7.25% 1.90% 2.89% 0.65%

Injury and poisoning 15.84% 1.32% 2.95% 2.70%
Genitourinary system 0.75% 2.38% 2.71% -0.74%
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Estimation results: Weights forecast (nonlinear trends)

MANAGING MORTALITY RISK WITH EXTENDED CREDITRISK+ 7
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Figure 4.1. Estimated risk factor realisations.

Table 4.1. Estimated weights for all death causes with five and 95 percent
quantiles in brackets.

male female

60 to 64 years 80 to 84 years 60 to 64 years 80 to 84 years

2011 2031 (quant.) 2011 2031 (quant.) 2011 2031 (quant.) 2011 2031 (quant.)

neop. 0.499 0.547
(
0.561
0.531

)
0.324 0.378

(
0.392
0.364

)
0.592 0.648

(
0.662
0.629

)
0.263 0.303

(
0.319
0.288

)

circ. 0.228 0.116
(
0.123
0.109

)
0.325 0.173

(
0.181
0.164

)
0.140 0.060

(
0.065
0.055

)
0.342 0.149

(
0.158
0.140

)

ext. 0.056 0.062
(
0.073
0.053

)
0.026 0.028

(
0.033
0.024

)
0.072 0.069

(
0.078
0.060

)
0.100 0.126

(
0.139
0.113

)

resp. 0.051 0.036
(
0.040
0.032

)
0.106 0.092

(
0.101
0.083

)
0.038 0.037

(
0.043
0.032

)
0.051 0.068

(
0.074
0.061

)

endo. 0.044 0.062
(
0.070
0.055

)
0.047 0.077

(
0.084
0.070

)
0.036 0.051

(
0.060
0.043

)
0.054 0.080

(
0.089
0.071

)

dig. 0.041 0.036
(
0.040
0.031

)
0.027 0.020

(
0.023
0.018

)
0.035 0.032

(
0.038
0.026

)
0.024 0.023

(
0.027
0.020

)

nerv. 0.029 0.052
(
0.061
0.045

)
0.045 0.061

(
0.068
0.055

)
0.031 0.024

(
0.029
0.020

)
0.034 0.023

(
0.027
0.020

)

idio. 0.018 0.028
(
0.034
0.023

)
0.015 0.018

(
0.020
0.016

)
0.022 0.023

(
0.028
0.019

)
0.023 0.024

(
0.027
0.022

)

inf. 0.014 0.025
(
0.033
0.020

)
0.015 0.022

(
0.027
0.019

)
0.014 0.020

(
0.027
0.015

)
0.017 0.024

(
0.028
0.020

)

ment. 0.013 0.027
(
0.036
0.019

)
0.041 0.105

(
0.130
0.078

)
0.012 0.032

(
0.046
0.021

)
0.062 0.155

(
0.188
0.118

)

geni. 0.008 0.008
(
0.010
0.006

)
0.028 0.025

(
0.028
0.023

)
0.009 0.005

(
0.006
0.004

)
0.029 0.026

(
0.028
0.023

)

uncertainty in forecasted weights is reflected by wide confidence intervals (values in brackets)
for the risk factor of mental and behavioural disorders. These confidence intervals are derivedP.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 36 / 54



Leading death causes for years 2011 and 2051

8 J. HIRZ, U. SCHMOCK, AND P. V. SHEVCHENKO

from corresponding MCMC chains and, therefore, solely reflect uncertainty associated with
parameter estimation. Note that results for estimated trends depend on the length of the
data period as short-term trends might not coincide with mid- to long-term trends.

Table 4.2. Leading death causes with weights in brackets.

male female

2011 2051 2011 2051

1. neoplasms (0.469) neoplasms (0.474) neoplasms (0.603) neoplasms (0.581)

55–59 years 2. circulatory (0.222) infectious (0.092) circulatory (0.112) nervous (0.077)

3. external (0.085) external (0.083) respiratory (0.058) not elsewhere (0.068)

1. neoplasms (0.505) neoplasms (0.575) neoplasms (0.551) neoplasms (0.609)

65–69 years 2. circulatory (0.226) endocrine (0.082) circulatory (0.162) mental (0.112)

3. respiratory (0.072) mental (0.075) respiratory (0.083) nervous (0.065)

1. neoplasms (0.405) neoplasms (0.466) neoplasms (0.365) neoplasms (0.378)

75–79 years 2. circulatory (0.277) mental (0.185) circulatory (0.271) mental (0.245)

3. respiratory (0.100) endocrine (0.098) respiratory (0.103) respiratory (0.108)

1. circulatory (0.395) mental (0.329) circulatory (0.441) mental (0.503)

85+ years 2. neoplasms (0.217) neoplasms (0.216) neoplasms (0.131) circulatory (0.092)

3. respiratory (0.115) circulatory (0.133) mental (0.101) neoplasms (0.090)

As an artificial example of our annuity model, assume m = 1 600 policyholders which
distribute uniformly over all age categories and genders, i.e., each age category contains
100 policyholders with corresponding death probabilities, as well as weights as previously
estimated and forecasted for 2012. Annuities Xi = Yi for all i ∈ {1, . . . ,m} are paid annually
and take deterministic values in {11, . . . , 20} such that ten policyholders in each age and
gender category share equally high payments. We now want to analyse the scenario, indexed
by ‘scen’, that deaths due to neoplasms are reduced by 25 percent in 2012 over all age
categories. In that case, we can estimate the realisation of risk factor for neoplasms, see
(3.2), which takes an estimated value of 0.7991. Running our annuity model with this risk
factor realisation being fixed, we end up with a loss distribution Lscen where deaths due to
neoplasms have decreased. Figure 4.2 then shows probability distributions of traditional loss
L without scenario, as well as of scenario loss Lneo with corresponding 95 percent and 99
percent quantiles. We observe that a reduction of 25 percent in cancer death rates leads to
a remarkable shift in quantiles of the loss distribution as fewer people die and, thus, more
annuity payments have to be made.

To show a further application of our model we compare out-of-sample forecasts from
our model to forecasts obtained by the traditional Lee–Carter model. Given the number

of living people ma,g(t), as well as annual deaths na,g(t) :=
∑K
k=0 na,g,k(t), the Lee–Carter

approach models logarithmic death rates log ra,g(t) := log na,g(t)− logma,g(t) in the form
log ra,g(t) = µa,g + κtνa,g + εa,g,t with independent normal error terms εa,g,t with mean zero
and a common time-specific components κ̂t. Using suitable normalisations, estimates for
these components can be derived via method of moments and singular value decompositions,
see, for example, Kainhofer, Predota and Schmock [3, Section 4.5.1]. Forecasts may then be
obtained by using auto-regressive models for κt. Conversely, using our model it is straight-
forward to forecast death rates and to give corresponding confidence intervals via setting

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 37 / 54



Estimation results: MCMC density histograms

Density histograms of MCMC chains for the variance of risk factor for
mental and behavioural disorders as well as for weight intercept for females
aged 55 to 59 years of death cause neoplasms (right).
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Estimation results: Risk Factors
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Forecast: death probabilities and death causes weights
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Figure : Forecasted death probabilities and cumulative weights for various death
causes for females aged 50-54; shaded area correspond to 5% and 95% quantiles
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Forecast for death probabilities
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Figure : Forecasted death probabilities and 90% confidence intervals using
Australian death and population data for the years 1963 to 1997.
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Parameter uncertainty: portfolio loss distribution

Australian data with the same setup as before.
Let each age category and gender have 100 policyholders with annual
deterministic annuity payments Xi = 11, . . . , 20.

Derive loss distribution L =
∑m

i=1 Xi −
∑m

i=1

∑Ni (T+1)
j=1 Xi ,j with

extended CreditRisk+ where Xi ,j ∼ Xi .
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Parameter uncertainty: Distribution of quantiles

As we are using MCMC, we can derive (approximatively) distributions of
quantiles of L, i.e., we can quantify parameter risk.

95 and 99 percent quantile distributions
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Figure : Distributions of 95 and 99 percent quantile based on MCMC chain
realisations.

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 43 / 54



Scenario analysis

If we assume that deaths due to cancer decrease by 25% over all age
categories next year due to better medication, then we get the following
shifted distribution of L.
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Model validation

validation via cross-covariance Cov(Na,g,k ,Na′,g′,k)

validation via independence of death counts for different death causes
Cov(Na,g,k ,Na′,g′,k ′) = 0

validation via serial correlation, Na,g,k(t), t = 1, . . . ,T are
independent

validation via risk factor realisations (Λk are from Gamma with
mean=0 and variance βk).

model selection (reduction of factors): AIC, BIC, DIC
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Model Forecast: Male, Australia

MODELLING ANNUITY PORTFOLIOS WITH EXTENDED CREDITRISK+ 51

on mortality improvement is just temporary, indicating necessity of monotone or
less humped trends. For females this is not a major issue in the case of Australia.
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Figure 7.1. Australian logarithmic death probabilities as well
as forecasts, i.e., (qa,g(2013), qa,g(2063), qa,g(2113))a∈{1,...,A}, based
on our annuity model using Australian from 1971 to 2013 (left)
as well as correspoding smoothed mortality trends (right), i.e.,
(ba,g)a∈{1,...,A}.

For the derivation of expected future life times, we assume a death probability of
zero for ages 121+ and a constant one-year death probability for ages 100, . . . , 120
given by the previously estimated death probability for age group 100+. This
approach does certainly not re�ect real world observations but, nevertheless, it is
used due to non-available data for older ages and minor impact on �nal results
as few people get older than 100 years. Kainhofer, Predota and Schmock [19,
Section 4.7.2] provide a more sophisticated approach towards this issue. We can
draw a remarkable conclusion from the results provided in Appendix D. Whilst the
Australian Bureau of Statistics made a press release in late October 2014 saying
that `Aussie men now expected to live past 80', our model states that Australian

Figure : Australian logarithmic death probabilities as well as forecasts, i.e.,
(qa,g (2013); qa,g (2063); qa,g (2113), based on our annuity model using Australian
from 1971 to 2013 (left) as well as correspoding smoothed mortality trends ba,g

(right).

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 46 / 54



Model Forecast: Female, Australia

MODELLING ANNUITY PORTFOLIOS WITH EXTENDED CREDITRISK+ 51

on mortality improvement is just temporary, indicating necessity of monotone or
less humped trends. For females this is not a major issue in the case of Australia.
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Figure 7.1. Australian logarithmic death probabilities as well
as forecasts, i.e., (qa,g(2013), qa,g(2063), qa,g(2113))a∈{1,...,A}, based
on our annuity model using Australian from 1971 to 2013 (left)
as well as correspoding smoothed mortality trends (right), i.e.,
(ba,g)a∈{1,...,A}.

For the derivation of expected future life times, we assume a death probability of
zero for ages 121+ and a constant one-year death probability for ages 100, . . . , 120
given by the previously estimated death probability for age group 100+. This
approach does certainly not re�ect real world observations but, nevertheless, it is
used due to non-available data for older ages and minor impact on �nal results
as few people get older than 100 years. Kainhofer, Predota and Schmock [19,
Section 4.7.2] provide a more sophisticated approach towards this issue. We can
draw a remarkable conclusion from the results provided in Appendix D. Whilst the
Australian Bureau of Statistics made a press release in late October 2014 saying
that `Aussie men now expected to live past 80', our model states that Australian

Figure : Australian logarithmic death probabilities as well as forecasts, i.e.,
qa,g (2013); qa,g (2063); qa,g (2113), based on our annuity model using Australian
from 1971 to 2013 (left) as well as corresponding smoothed mortality trends ba,g

(right).
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Nonlinear Trends and Forecast for death probabilities,
Australia

MANAGING MORTALITY RISK WITH EXTENDED CREDITRISK+ 11
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Figure 4.4. Logarithm of death probabilities (top) for 2013 in Australia
and forecasts for 2063 and 2113 based on data from 1971 to 2013, as well as
corresponding mortality trends (βa,g)a∈{1,...,A} (middle) and trend reduction
(ηa,g)a∈{1,...,A} (bottom), for males (left) and females (right).

where survival probabilities over k ∈ N years are given by kpa,g(T ) :=
∏k−1
j=0

(
1−qa+j,g(T+j)

)

and where Ka,g(T ) denotes the number of completed future years lived by a person of
particular age and gender at time T . In Australia we get a life expectancy of 87.95 years
for male and 89.48 years for female newborns in 2013. Thus, comparing these numbers
to a press release from October 2014 from the Australian Bureau of Statistics saying that
‘Aussie men now expected to live past 80’, considering mortality trends has a massive impact
on life expectancy compared to classical approaches without mortality trends. It is thus
highly recommended for every company or organisation which is exposed to longevity risk to
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Model Forecast: Male, Australia
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Table C.2. Estimates for our annuity model based on Australian
data from 1997 to 2011 using matching of moments as well as
MCMC with 20 000 steps.

Para- Match. MCMC Standard 5% 95% Accept. Standard
meter moments mean dev. quantile quantile prob. error

σ2
7 0.0026 0.0040 0.0020 0.0018 0.0078 0.2380 0.000047
σ2

8 0.0004 0.0004 0.0003 0.0001 0.0010 0.2223 0.000009
σ2

9 0.0019 0.0028 0.0017 0.0011 0.0058 0.1597 0.000051
σ2

10 0.0004 0.0004 0.0004 0.0000 0.0011 0.2773 0.000010

Appendix D. Australian life tables 2013

Below, based on Example 7.5 and using MCMC with 20 000 samples, Australian
male and female life tables for 2013 are provided below. For notational purposes and
a closer link to traditional notation, age categories are denoted by an x and gender
variables are left out. For each age x ∈ {0, 1, . . . , 100+}, annual death probabilities
qx(2013) for people aged between x and x + 1, as well as survivors lx(2013) and
deaths dx(2013) based on a starting value of 100 000 people are given. Further,
mortality trends are provided in the form of smoothed annual relative reduction in
death probabilities ignoring trend reductions, i.e., 1−exp(−bx), as well as expected
future life times (EFLT) with and without trend are given. Expected future life
times with trend are given by Equation (7.4) whereas expected future life times
without trend are simply calculated by

e∗x(2013) =
∞∑

k=1

k∏

j=1

(
1− qx+j−1(2013)

)
, x ∈ {0, 1, . . . , 100+} .

Table D.1. 2013 Australian male life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

0 0.003448 100000 345 0.0411 89.56 79.81
1 0.000293 99655 29 0.0405 88.79 79.09
2 0.000196 99626 20 0.0402 87.74 78.11
3 0.000141 99606 14 0.0400 86.68 77.13
4 0.000107 99592 11 0.0399 85.61 76.14
5 0.000102 99582 10 0.0399 84.53 75.15
6 0.000089 99572 9 0.0399 83.46 74.15
7 0.000081 99563 8 0.0399 82.38 73.16
8 0.000088 99555 9 0.0398 81.30 72.17
9 0.000080 99546 8 0.0397 80.22 71.17
10 0.000089 99538 9 0.0395 79.13 70.18
11 0.000072 99529 7 0.0391 78.05 69.19
12 0.000091 99522 9 0.0386 76.96 68.19
13 0.000119 99513 12 0.0378 75.87 67.20
14 0.000150 99501 15 0.0367 74.78 66.20
15 0.000231 99486 23 0.0354 73.69 65.21

.....
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Table D.1. 2013 Australian male life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

67 0.012178 87267 1063 0.0310 18.62 17.03
68 0.013584 86204 1171 0.0307 17.70 16.24
69 0.014679 85033 1248 0.0303 16.80 15.46
70 0.016734 83785 1402 0.0300 15.92 14.69
71 0.018522 82383 1526 0.0297 15.05 13.94
72 0.020361 80857 1646 0.0293 14.21 13.21
73 0.022931 79211 1816 0.0289 13.38 12.48
74 0.025593 77394 1981 0.0285 12.58 11.77
75 0.028412 75413 2143 0.0279 11.80 11.08
76 0.032097 73271 2352 0.0274 11.04 10.41
77 0.036479 70919 2587 0.0267 10.30 9.75
78 0.040420 68332 2762 0.0259 9.60 9.12
79 0.046157 65570 3026 0.0250 8.92 8.51
80 0.051848 62543 3243 0.0240 8.27 7.92
81 0.059001 59301 3499 0.0229 7.65 7.35
82 0.065770 55802 3670 0.0216 7.06 6.81
83 0.074208 52132 3869 0.0203 6.49 6.29
84 0.084168 48263 4062 0.0189 5.96 5.80
85 0.095913 44201 4239 0.0174 5.46 5.33
86 0.107829 39962 4309 0.0158 5.00 4.89
87 0.120312 35652 4289 0.0143 4.57 4.49
88 0.136212 31363 4272 0.0127 4.16 4.10
89 0.151702 27091 4110 0.0112 3.79 3.75
90 0.171324 22981 3937 0.0097 3.45 3.41
91 0.191627 19044 3649 0.0083 3.15 3.12
92 0.209790 15395 3230 0.0069 2.88 2.86
93 0.230359 12165 2802 0.0057 2.63 2.62
94 0.259132 9363 2426 0.0045 2.41 2.40
95 0.286255 6937 1986 0.0035 2.25 2.25
96 0.298779 4951 1479 0.0026 2.15 2.15
97 0.321617 3472 1117 0.0018 2.06 2.06
98 0.330522 2355 778 0.0011 2.03 2.04
99 0.330358 1577 521 0.0005 2.04 2.04

100+ 0.327825 1056 0.0000 2.04 2.05

Table D.2. 2013 Australian female life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

0 0.002837 100000 284 0.0404 91.91 84.13
1 0.000240 99716 24 0.0403 91.11 83.37
2 0.000140 99692 14 0.0400 90.07 82.39
3 0.000104 99678 10 0.0394 89.02 81.41
4 0.000092 99668 9 0.0387 87.97 80.41
5 0.000081 99659 8 0.0378 86.92 79.42
6 0.000069 99651 7 0.0368 85.86 78.43

P.Shevchenko, CSIRO Modelling Annuity Portfolios and Longevity July 2015 49 / 54



Model Forecast: Female, Australia

82 J. HIRZ, U. SCHMOCK, AND P. V. SHEVCHENKO

Table D.1. 2013 Australian male life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

67 0.012178 87267 1063 0.0310 18.62 17.03
68 0.013584 86204 1171 0.0307 17.70 16.24
69 0.014679 85033 1248 0.0303 16.80 15.46
70 0.016734 83785 1402 0.0300 15.92 14.69
71 0.018522 82383 1526 0.0297 15.05 13.94
72 0.020361 80857 1646 0.0293 14.21 13.21
73 0.022931 79211 1816 0.0289 13.38 12.48
74 0.025593 77394 1981 0.0285 12.58 11.77
75 0.028412 75413 2143 0.0279 11.80 11.08
76 0.032097 73271 2352 0.0274 11.04 10.41
77 0.036479 70919 2587 0.0267 10.30 9.75
78 0.040420 68332 2762 0.0259 9.60 9.12
79 0.046157 65570 3026 0.0250 8.92 8.51
80 0.051848 62543 3243 0.0240 8.27 7.92
81 0.059001 59301 3499 0.0229 7.65 7.35
82 0.065770 55802 3670 0.0216 7.06 6.81
83 0.074208 52132 3869 0.0203 6.49 6.29
84 0.084168 48263 4062 0.0189 5.96 5.80
85 0.095913 44201 4239 0.0174 5.46 5.33
86 0.107829 39962 4309 0.0158 5.00 4.89
87 0.120312 35652 4289 0.0143 4.57 4.49
88 0.136212 31363 4272 0.0127 4.16 4.10
89 0.151702 27091 4110 0.0112 3.79 3.75
90 0.171324 22981 3937 0.0097 3.45 3.41
91 0.191627 19044 3649 0.0083 3.15 3.12
92 0.209790 15395 3230 0.0069 2.88 2.86
93 0.230359 12165 2802 0.0057 2.63 2.62
94 0.259132 9363 2426 0.0045 2.41 2.40
95 0.286255 6937 1986 0.0035 2.25 2.25
96 0.298779 4951 1479 0.0026 2.15 2.15
97 0.321617 3472 1117 0.0018 2.06 2.06
98 0.330522 2355 778 0.0011 2.03 2.04
99 0.330358 1577 521 0.0005 2.04 2.04

100+ 0.327825 1056 0.0000 2.04 2.05

Table D.2. 2013 Australian female life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

0 0.002837 100000 284 0.0404 91.91 84.13
1 0.000240 99716 24 0.0403 91.11 83.37
2 0.000140 99692 14 0.0400 90.07 82.39
3 0.000104 99678 10 0.0394 89.02 81.41
4 0.000092 99668 9 0.0387 87.97 80.41
5 0.000081 99659 8 0.0378 86.92 79.42
6 0.000069 99651 7 0.0368 85.86 78.43
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Table D.2. 2013 Australian female life table.

Annual death Survivors Deaths from Mortality EFLT EFLT
Age x probability up to x x to x+ 1 trend with trend no trend

qx(2013) lx(2013) dx(2013) 1− exp(−bx) ex(2013) e∗x(2013)

58 0.003035 96108 292 0.0266 30.42 27.89
59 0.003351 95816 321 0.0265 29.39 26.98
60 0.003699 95495 353 0.0263 28.36 26.07
61 0.004069 95142 387 0.0261 27.34 25.16
62 0.004516 94755 428 0.0259 26.33 24.27
63 0.004778 94327 451 0.0257 25.33 23.38
64 0.005355 93876 503 0.0256 24.33 22.49
65 0.005779 93373 540 0.0255 23.34 21.61
66 0.006543 92834 607 0.0254 22.36 20.74
67 0.007126 92226 657 0.0254 21.39 19.87
68 0.007830 91569 717 0.0254 20.43 19.02
69 0.008732 90852 793 0.0255 19.47 18.17
70 0.009823 90059 885 0.0256 18.53 17.33
71 0.011078 89174 988 0.0256 17.61 16.50
72 0.012152 88186 1072 0.0257 16.70 15.68
73 0.013485 87115 1175 0.0257 15.80 14.88
74 0.015398 85940 1323 0.0256 14.92 14.08
75 0.016883 84617 1429 0.0255 14.05 13.30
76 0.018876 83188 1570 0.0253 13.20 12.53
77 0.022214 81618 1813 0.0250 12.37 11.77
78 0.024754 79805 1976 0.0245 11.57 11.04
79 0.027942 77829 2175 0.0239 10.78 10.32
80 0.032864 75654 2486 0.0232 10.01 9.61
81 0.037568 73168 2749 0.0223 9.28 8.94
82 0.042815 70419 3015 0.0212 8.58 8.29
83 0.049250 67404 3320 0.0200 7.91 7.66
84 0.056783 64085 3639 0.0187 7.26 7.06
85 0.064783 60446 3916 0.0173 6.65 6.48
86 0.074568 56530 4215 0.0159 6.07 5.93
87 0.087143 52315 4559 0.0145 5.52 5.41
88 0.100953 47756 4821 0.0130 5.02 4.92
89 0.113857 42935 4888 0.0116 4.55 4.48
90 0.132446 38046 5039 0.0102 4.11 4.05
91 0.149715 33007 4942 0.0089 3.72 3.67
92 0.170845 28066 4795 0.0077 3.35 3.31
93 0.189935 23271 4420 0.0067 3.03 3.00
94 0.215474 18851 4062 0.0057 2.73 2.70
95 0.239804 14789 3546 0.0050 2.46 2.44
96 0.262791 11242 2954 0.0043 2.23 2.21
97 0.290372 8288 2407 0.0038 2.02 2.00
98 0.314350 5881 1849 0.0034 1.83 1.82
99 0.343941 4033 1387 0.0031 1.67 1.66

100+ 0.396335 2646 0.0028 1.53 1.52
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Further applications

Population forecasts.

Effects of scenarios where death rates of certain death causes
suddenly spike by x · 100 percent within one year can be derived.

Our model can be generalised to individual losses Yi ,k depending on
death cause k which allows modelling of new life-insurance
contracts.

Certain dependence structures for risk factors can be assumed
while still being able to calculate loss distributions exactly via iterated
Panjer’s recursion.
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