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Intractable likelihood

• Bayesian theorem

𝑝 𝑋 𝑌𝑜𝑏𝑠 =
𝑝 𝑌𝑜𝑏𝑠 𝑋 𝜋(𝑋)

𝑝(𝑌𝑜𝑏𝑠)

• Bayesian inference needs the value of likelihood 𝑝(𝑌𝑜𝑏𝑠|𝑋).

• What should we do if the likelihood is intractable?
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• When this happens?
• 𝑌 may be given only by simulation

• Population genetics:  
𝑌 ∼ 𝑝(𝑦|𝑋) is given by a branching process.

• Epidemiology:
𝑌 ∼ 𝑝(𝑦|𝑋) is given by solving (simulating) 
a stochastic differential equation. 

• Density function 𝑝(𝑦|𝑥) is given only by a non-density form. 
• 𝛼-Stable distribution:  Fourier transform is known

• Recent technology: ABC (Approximate Bayesian Computation)
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Problem to solve

• Filtering with intractable likelihood
• State space model

𝑝(𝑋𝑡|𝑋𝑡−1): state transition
𝑞(𝑌𝑡|𝑋𝑡): observation model

• Assumption:
Density 𝑞(𝑌𝑡|𝑋𝑡) is INTRACTABLE, but sampling is possible. 

• Note:
Standard Sequential MC / Particle Filters are not applicable.
They need the value 𝑞(𝑌𝑡|𝑋𝑡) for importance weighting. 

4

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…

𝑝(𝑋𝑡|𝑋𝑡−1)

𝑞(𝑌𝑡|𝑋𝑡)



• Example:
𝛼-stable Stochastic Volatility model

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜂𝑡 , 𝜂𝑡 ∼ 𝑁 0, 𝜎𝑠
2

𝑌𝑡 = 𝑒𝑋𝑡/2𝑤𝑡 , 𝑤𝑡 ∼ 𝑆(𝛼, 0, 𝜎𝑜)

𝑋𝑡: log volatility, 𝑌𝑡: return
Popular in mathematical finance

• Existing methods
• Convolution particle filter (KDE-based) (Campillo & Rossi 2009)

• ABC filter   (Jasra et al 2012; Calvet & Czellar 2014)
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Our approach

Kernel method for particle representation of a distribution

• Kernel mean embedding
• Positive definite kernel / RKHS is used for nonparametric 

estimation
• Good for (moderately) high-dimensional data

• A new way of Bayesian inference
• Kernel mean can be regarded as “particle” representation.
• Negative weights may appear (signed measure)
• Bayesian inference is done by matrix computation 
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Representing distributions with 
kernel means
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Positive definite kernel

Definition
Ω: set.  𝑘: Ω × Ω → 𝐑 is a positive definite kernel if
(1) 𝑘 𝑥, 𝑦 = 𝑘(𝑦, 𝑥)

(2) For any 𝑥1, … , 𝑥𝑛 in Ω, the Gram matrix 𝑘 𝑥𝑖 , 𝑥𝑗 is positive 
semidefinite, i.e., 

 

𝑖,𝑗=1

𝑛

𝑐𝑖𝑐𝑗𝑘(𝑥𝑖 , 𝑥𝑗) ≥ 0

for any 𝑐1, … , 𝑐𝑛 ∈ 𝐑.

It is known that 𝑘 uniquely defines a reproducing kernel Hilbert space 
(RKHS), which is a function space and used for a feature space. 
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Kernel method at a glance

• Nonlinear transform of data

• Kernel trick:  special, efficient computation of inner product
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Φ 𝑋𝑖 = 𝑘(⋅, 𝑋𝑖)

𝑋𝑖

Feature map

Feature space
（function space, RKHS）

Data space

Φ 𝑥 ,Φ 𝑦 𝐻𝑘
= 𝑘(𝑥, 𝑦)

e.g. Gaussian RBF kernel 𝑘 𝑥, 𝑦 = exp −
𝑥−𝑦 2

2𝜎2

SVM

Kernel PCA

etc.



Kernel mean

Kernel mean:
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Φ 𝑋 = 𝑘(⋅, 𝑋)

𝑋 random var.

Feature map

Feature space, RKHS
（function space）

Data space

Hilbert space-valued 
random variable

𝑚𝑃 = 𝐸𝑋 Φ 𝑋



Kernel mean ＝ Representation of distribution

• No information loss (with suitable choice of kernel, e.g. Gaussian)
 Feature space is infinite dimensional (infinite components)

• Integral transform
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𝑚𝑃 = 𝐸𝑋 Φ 𝑋 = ∫ 𝑘 ⋅, 𝑥 𝑑𝑃(𝑥) Function again.

c.f. Characteristic function 𝜙𝑃 𝜔 = ∫ 𝑒 −1𝜔𝑇𝑥𝑑𝑃 𝑥



Kernel mean as a particle representation

• Estimator of kernel mean

• More generally

12

 𝑚𝑃 =
1

𝑁
 

𝑖=1

𝑁

𝑘(⋅, 𝑋𝑖) 𝑋1, … , 𝑋𝑁 ∼ 𝑃,  i.i.d.

 𝑚𝑃 = 

𝑖=1

𝑁

𝑤𝑖𝑘(⋅, 𝑋𝑖)

Weighted sample expression (𝑋𝑖 , 𝑤𝑖)



Kernel version of importance weight

• Prior 𝜋: kernel mean   𝑚𝜋 =
1

𝑁
 𝑖 𝑘 ⋅, 𝑋𝑖

• Likelihood 𝑝 𝑦 𝑥 ：intractable, 
but sampling possible

𝑌𝑖 ∼ 𝑝(𝑦|𝑥 = 𝑋𝑖) (𝑖 = 1,… ,𝑁)

• Kernel mean of posterior given 𝑦𝑜 ∶ (𝑋𝑖 , 𝑤𝑖)

 𝑚𝑝𝑜𝑠𝑡 =  𝑖𝑤𝑖𝑘(⋅, 𝑋𝑖)

13

𝑌

𝑋𝑖

𝑌𝑖

𝑦𝑜

𝑤 = 𝐺𝑌 + 𝜆𝐼𝑁
−1𝐤𝑌(𝑦𝑜)

𝑋𝑖𝐤𝑌 𝑦𝑜 = 𝑘 𝑌1, 𝑦𝑜 , … , 𝑘 𝑌𝑁, 𝑦𝑜
𝑇

𝐺𝑌 = 𝑘 𝑌𝑖 , 𝑌𝑗 ,

ridge regression



Theory: convergence

Theorem  

•  𝑚𝜋 =
1

𝑁
 𝑖=1
𝑁 𝑘 ⋅, 𝑋𝑖 is a consistent estimator of 𝑚𝜋 with 

convergence rate  𝑚𝜋 −𝑚𝜋 𝐻 = 𝑂𝑝 𝑁−𝑏 0 < 𝑏 ≤ 1/2 .  

• 𝐸[𝑘(𝑌, 𝑌′)|𝑋 = 𝑥, 𝑋′ = 𝑥′] is a function in 𝐻𝑋 ⊗𝐻𝑋 as a function of 
𝑥, 𝑥′ , where 𝑌 ∼ 𝑝 𝑦 𝑥 , 𝑌′ ∼ 𝑝(𝑦′|𝑥′) independently.  

Then for any 𝑓 𝑥 with ∫ 𝑓 𝑥 2𝜋 𝑥 𝑑𝑥 < ∞ and ∫ 𝑓 𝑥 𝑝 𝑥 𝑦 =⋅ 𝑑𝑥 ∈
𝑅(𝐶𝑌𝑌) (range of covariance operator 𝐶𝑌𝑌),  

 

𝑖=1

𝑁

𝑤𝑖𝑓 𝑋𝑖 − ∫ 𝑓 𝑥 𝑝 𝑥 𝑌 = 𝑦𝑜𝑏𝑠 𝑑𝑥 = 𝑂𝑝 𝑁−𝑏/2 (𝑁 → ∞).
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Recap: “Standard” particle methods

• Importance weight

𝑝 𝑥 𝑦𝑜 =
𝑝 𝑦𝑜 𝑥 𝜋 𝑥

∫ 𝑝 𝑦𝑜 𝑥 𝜋 𝑥 𝑑𝑥

• Prior 𝜋： (𝑋𝑖 , 𝑣𝑖) particle 

 𝜋 =  𝑖 𝑣𝑖𝛿𝑋𝑖

• Likelihood 𝑝 𝑦 𝑥 ：known

• Given observation 𝑦𝑜,  
posterior 𝑝 𝑥 𝑦𝑜 is represented by (𝑋𝑖 , 𝑤𝑖)

𝑤𝑖 ∝ 𝑣𝑖𝑝 𝑦𝑜 𝑋𝑖
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𝑝 𝑦𝑜 𝑋𝑖

(𝑋𝑖 , 𝑣𝑖)

(𝑋𝑖 , 𝑤𝑖)

Importance weight



Comparison: kernel vs standard particles

Kernel mean

• Estimator of kernel mean
𝑚𝑃

• Allows negative weights

• Bayesian inference with 
linear algebra

Standard

• Estimation by atomic 
probability

• 𝑤𝑖 is a probability on 𝑁
points.

• Bayesian inference with 
importance sampling
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 𝑚𝑃 =  𝑖=1
𝑁 𝑤𝑖𝑘(⋅, 𝑋𝑖)  𝑖=1

𝑁 𝑤𝑖𝛿𝑋𝑖



Kernel Mean Particle Filter
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Re: Filtering with intractable likelihood

• Filtering with intractable likelihood
• State space model

𝑝(𝑋𝑡|𝑋𝑡−1): state transition
𝑞(𝑌𝑡|𝑋𝑡): observation model

• Assumption:
𝑞(𝑌𝑡|𝑋𝑡) is INTRACTABLE, but sampling is possible. 

• Apply the kernel IW for the intractable likelihood!
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X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…

𝑝(𝑋𝑡|𝑋𝑡−1)

𝑞(𝑌𝑡|𝑋𝑡)



Kernel Mean Particle Filter (Fukumizu et al 2015+)
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1

𝑁
 𝑗=1
𝑁 𝑘(⋅, 𝑋𝑗

𝑡+1)

Sampling 𝑝(𝑋𝑡+1|𝑋𝑡)
Correction

Kernel IW

 𝑗=1
𝑁 𝑤𝑗

𝑡+1𝑘 ⋅, 𝑋𝑗
𝑡+1

𝑝 𝑋𝑡 𝑦1, … , 𝑦𝑡 𝑝 𝑋𝑡+1 𝑦1, … , 𝑦𝑡 𝑝 𝑋𝑡+1 𝑦1, … , 𝑦𝑡+1

𝑍𝑗
𝑡 𝑋𝑗

𝑡+1

Prediction

1

𝑁
 𝑗=1
𝑁 𝑘(⋅, 𝑍𝑗

𝑡)

𝑌𝑗
𝑡+1

𝑋𝑗
𝑡+1

Sampling
𝑞(𝑌𝑡+1|𝑋𝑡+1)

𝑍𝑗
𝑡+1

Resampling
Kernel herding

𝑝 𝑋𝑡+1 𝑦1, … , 𝑦𝑡+1
1

𝑁
 𝑗=1
𝑁 𝑘(⋅, 𝑍𝑗

𝑡+1)

𝑦𝑡+1

Positive weight

Negative weight



Resampling by kernel herding

• Kernel herding (Chen et al 2010)

• Find points 𝑍1, … , 𝑍𝑁 so that  the kernel mean 𝑚𝑃 = ∫ 𝑘 ⋅, 𝑥 𝑑𝑃 𝑥 is 
approximated: 

min
𝑍1,…,𝑍𝑁

𝑚𝑃 −
1

𝑁
 𝑖=1
𝑁 𝑘 ⋅, 𝑍𝑖

𝐻

• Kernel herding solves 𝑍1, 𝑍2, … sequentially.  

𝑍ℓ+1 = argmax
𝑍

𝑚𝑃 𝑍 −
1

ℓ+1
 𝑖=1
ℓ 𝑘(𝑍, 𝑍𝑖)

• KH shows good approximation accuracy in theory and practice.
𝑂(1/𝑁) in norm (NOT squared) for finite dimensional RKHS. 
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c.f. ABC filter

• Approximate Bayesian Computation (ABC) 
• Likelihood 𝑝 𝑦 𝑥 ：intractable, but sampling possible

• Simplest rejection method: Repeat 1-3. 
1. 𝑋𝑖 ∼ 𝜋

2. 𝑌𝑖 ∼ 𝑝 𝑦 𝑥 = 𝑋𝑖
3. If 𝑑 𝑌𝑖 , 𝑦𝑜𝑏𝑠 < 휀, Accept 𝑋𝑖;  otherwise Reject.

• If 휀 → 0, the accepted sample approaches to a sample from 𝑝 𝑥 𝑦𝑜𝑏𝑠 ,
but acceptance rate becomes low. 

• For high-dimensional 𝑦, acceptance rate is lower.  Low dimensional 
(sufficient) statistics are preferably used. 

• ABC filter: apply ABC to the correction step in the particle 
filter. 21



Application: Stochastic Volatility model

• Multivariate 𝛼-stable Stochastic Volatility model
𝑋𝑡 = Φ𝑋𝑡−1 + 𝑣𝑡, Φ = Diag 𝜙1, … , 𝜙𝑑 , 𝑣𝑡 ∼ 𝑁 0, 𝜎𝑝

2𝐼𝑑

𝑌𝑡 = 𝑉𝑡
1/2

𝑤𝑡 , 𝑉𝑡 = Diag 𝑒𝑋𝑡,1 , … , 𝑒𝑋𝑡,𝑑 , 𝑤𝑡,𝑖 ∼ 𝑆 𝛼, 0, 𝜎𝑜 , 𝑣𝑡 ⊥ 𝑤𝑡

𝑆 𝛼, 0, 𝜎𝑜 : 𝛼-Stable distribution.
𝛼 = 2: normal; 𝛼 = 1: Cauchy．
For general 𝛼:  no analytic form for 
density, but sampling is possible. 

• A model for volatility (degree of 
variations) of securities. 

• Used popularly in mathematical finance.
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𝑋𝑡

𝑌𝑡

𝛼 = 1.5



𝛼-stable distribution
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𝑆 𝛼, 𝛽, 𝑐, 𝜇
𝛼: index, 𝛽: skewness, 𝑐: scale, 𝜇: shift 

• Characteristic function
𝜙 𝜔; 𝛼, 𝛽, 𝑐, 𝜇 = ∫ 𝑒 −1𝜔𝑥𝑑𝑃 𝑥; 𝛼, 𝛽, 𝑐, 𝜇

= exp( −1𝜇𝜔 − 𝑐𝜔 𝛼(1 − −1𝛽𝜔 𝑠𝑔𝑛 𝜔 Φ) )

where Φ = tan 𝜋𝛼/2 for 𝛼 ≠ 1;Φ =
2

𝜋
log |𝜔| for 𝛼 = 1.

• 𝑆 𝛼, 𝜇, 𝜎 ≔ 𝑆(𝛼, 0, 𝜎, 𝜇) (No skewness)



• 𝛼 = 1.5: intractable
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Mean square errors in estimating 𝑋𝑡 （point estimates, average over 𝑇 = 500）
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• 𝛼 = 2 (Gaussian, 𝑤𝑡 ∼ 𝑁 0, Σ𝑜 )  Tractable case (standard SMC applicable)   

Σ𝑜: regular
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KMPF (proposed)
ABC filter
SMC (SIR 500)
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CPU time / run
KMPF (500): 24.9 sec
ABC filter (500):     5.6 sec
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Σ𝑜: close to singular
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Concluding remarks

• Kernel mean particle filter for intractable likelihoods
• Kernel mean “particle” expression of distributions

• Allows negative weights.  
• Matrix computation for updating weights.
• Resampling by kernel herding.

• Effective for filtering with intractable likelihoods
• Works better than state-of-the-art ABC filters in high dimensional 

cases 
• Even better than standard SMC (SIR) in difficult cases.

(Needs more comparisons.)

• Future directions
• Estimation of parameters in state transition
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Thank you. 
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