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This Talk in a Nutshell

@ This talk is about the interaction between:

@ the probability density function of symmetric a-stable (SaS) random
variables;

@ the Fourier transform;

© and the Mellin transform.

Malcolm Egan (CTU) July 13, 2015 2/71



This Talk in a Nutshell

@ This interaction is mediated by techniques from fractional calculus.
@ Many of these ideas have been developed by Di Paolo et al in
@ Cottone and Di Paolo (2009), On the use of fractional calculus for the
probabilistic characterization of random variables.
@ Di Paolo and Pinnola (2012), Riesz fractional integrals and complex

fractional moments for the probabilistic characterization of random
variables.
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This Talk in a Nutshell

@ The following diagram—the Fourier-Mellin triangle—plays a key role:

px —2 Mx(v)

lf /
Px(t)
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Why «-Stable Random Variables?

o Distributions with heavy tails are not well-modeled as Gaussian.
@ «a-stable distributions are a relatively tractable alternative.

o P(X >\)~ CA~@
@ Applications:

@ Interference and noise modeling (e.g., in wireless radio
communications).
@ Asset returns in finance.
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Symmetric a-Stable Random Variables

@ An important sub-class are the symmetric a-stable (SaS) random
variables.

@ One way SaS random variables arise is the LePage series

[e.e]
X = Z riiagl'a
i=1

where
© {r:} are the arrival times of the Poisson process with rate 1;

@ {z;} are symmetric random variables X L' independent of {r;};
Q E[gf] <oo.

@ In applications this type of sum is called shot noise.
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Symmetric a-Stable Random Variables

@ A common definition of SaS random variables is via
d d
AXi+BX, = CX, X =-X,

where

@ Xi, X are independent copies of X;
Q@ A*+ B> = (%, for some « € (0,2].
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Symmetric a-Stable Random Variables

@ SaS random variables are also infinitely divisible.
@ For n > 2, there is a C, > 0 such that

X+ X 2 Cx, x2_x,

where
Q@ Xi,...,X, are independent copies of X;
Q@ C,=n'/c
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Examples of Symmetric a-Stable Random Variables

@ Gaussian distribution (X ~ S3(o,0,0)):

1 _ X2
X = 2

E[eitX] — e—02t2

@ Cauchy distribution (X ~ 51(0,0,0)):

px(x) = - [02]

mo | x2 + 02

E[eitX] — efa|t|

In general, SaS random variables do not have closed form densities.
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The Characteristic Function of SaS Random Variables

@ While the density of SaS random variables is difficult to work with,
the characteristic function

E[eitX] _ / px(X)eithX

—0o0

is known in closed form.
o In particular, let X ~ S,(0,0,0). Then,

ox(t) = B[] = & 716",

@ This result is very useful.
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Basic Properties of SaS Random Variables

Q Let Xi, Xz be independent with X; ~ S,(0},0,0). Then,
X+ X ~ Sa (05 +08)1/7,0,0).
@ Let X ~ 5,(0,0,0) and a € R. Then,
X +a~ 54(0,0,a).
@ Let X ~ 5,(0,0,0) and a € R\ {0}. Then,

aX ~ 54(|alo,0,0).
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Basic Properties of SaS Random Variables

Q Let X ~ 5,(0,0,0). Then,
P(X > \) ~ aa%xa.
@ Let X ~ 5,(0,0,0) and 0 < p < . Then,

2°H1r (P51 (~2)
av/aT (-5)

oP.

E[|IX]P] =
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The Mellin Transform

o Instead of taking the Fourier transform (i.e., the characteristic
function), we can consider the Mellin transform.

@ For a-stable distributions, this was first done by Zolotarev in 1957.

@ Since SaS densities are absolutely continuous functions, the Mellin
transform is

Mipx(x)](3) = /0 " px(x)xdx, 7 € C.

(More generally, the Mellin-Stieltjes transform is required.)
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The Mellin Transform

@ The Mellin transform can be related to the Fourier transform through
a change of variables.

o Consider the operator T : f(x) — f(eX),f € L}; ie.,

/Oo | (x)|dx < oo.

—00

@ Define the T-norm
1l = /0 ()X, (1)

where ¢ is chosen to ensure convergence for the class of functions f
we are interested in.
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The Mellin Transform

@ L! functions with finite T-norm
o
/ 1£() x€L|dx < o0 2)
0

form a function space.

@ On this space, the Fourier transform

F(TF)(t) = / T f(e)eax.

—0o0

is well defined. (More on this in Butzer and Jansche (1997)).
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The Mellin Transform

o Now consider
7] <’7 - C) ~ [ e rax, e >0
o Let y = €*, which gives
> / f(y (n c logy dy
—/0 fy)y™ y’7 dy

_ /0 T F )y Ty, F(y) = Fy)y .

F(TF) (

which is the Mellin transform of f*(y).
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The Mellin Transform

@ This means that for functions with finite T-norm
> 1
Il = [ 7Gx, 3)

we can use theorems for the Fourier transform of L! functions.

e E.g., the Fourier inversion theorem (more on this later).
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The Mellin Transform

@ The Mellin transform has a nice property.

@ Consider the product of two random variables Z = XY'. Then,
Mfz](s) = M[ix](s)M[fy](s)- (4)

@ This means that the Mellin transform plays a similar role for products
of random variables as the Fourier transform plays for sums.
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The Mellin Transform

@ The Mellin transform has an intimate link to fractional calculus.

@ To see this, we first overview some basic ideas in fractional calculus.
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A Brief Overview of Fractional Calculus

@ The starting point for fractional calculus is to generalize derivatives

n

dx”"

f(x), neN

to the case where n € R; e.g.,
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A Brief Overview of Fractional Calculus

@ To see how this might work, consider f(x) = xP.
@ We have,
dn
n < = P(p—=1) - (p—n+1)x""
_ P pn_ T(PHY)
(p—n)! Mp—n+1)

@ Using the properties of the Gamma function

I'(x):/ et 1dt,
0

it is possible to analytically continue to yield

& Tt L,

p—_ \F "7
)

dxd Mp—q+1)

with g € R (being careful with g = —1,-2,...).
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A Brief Overview of Fractional Calculus

@ An important way of generalizing is via the Riemann-Liouville
fractional integrals

(12F)(x) = r(lﬂ /0 T O (F Q).

@ The Riemann-Liouville fractional derivatives are then

(£1)"

(D1N0) = £ =2y g

o [ O
where v € C and n = [p] + 1, where p = Re(7).

@ This agrees with gamma function-based definition for the monomial
example developed in the previous slide.
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A Brief Overview of Fractional Calculus

@ The Riemann-Liouville fractional integral satisfies the semigroup
property:

19100 = 19FPy, 1218y = 197Py, (5)

where o, 5 > 0.
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The Link Between Fractional Calculus and the Mellin

Transform

A key observation is the link between the Riemann-Liouville fractional
integral and the Mellin transform.

Recall the Mellin transform is

MIF()]() = /0 " px()xdx, 7 € C.

The Riemann-Liouville fractional integral is

(12F)(x) = r(lﬂ /0 T O (F ).

That is,

M (x F Ol(7) = TN LX)
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A Key ldentity

@ For standard integrals, we have

F [/X f(T)dT] (1) = M

oo —it

@ This generalizes:

FUTA(E) = (=it) T FIF().
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A Key ldentity

@ Take 0 < p < 1. We need to take the Fourier transform of the

fractional integral; i.e.,

_ itx & > v—1 X — Ix .
FAO = [ [ Qdcd

@ Some basic manipulations yield

FIIF](t) = fr[gy()ﬂ /0 - e 1dc.

@ A useful identity tells us that

| et =i

0
where taking the principle value we understand that

(—it)"" =exp (—7 log |t] + ngn(t)) .
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A Key ldentity

o Leading us to
FILFI(t) = (=it) " FIF(2).

@ What does it mean?
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Recovering the Mellin Transform

@ The observation that
FLF(t) = (—it) T FIFI(t).
means that

(1F)(8) = F 1 [(=it) "V FIF(t)]
_ 1 / e (i) ().

21 J_o
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Recovering the Mellin Transform

@ The observation that
FLF](t) = (—it) T FIF](t).
means that

(F)(8) = F 7 [(=it) " FIF(1)]
= L7 e iy FA () d.

21 J_

@ As such,

(0)0) = - [ (i) " F(e)et

@ Now recall that

M) (1F)(x) = /0 T O (- 0.
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Recovering the Mellin Transform

o Putting it all together:

o0 r oo
| etraac =2 [T s
@ When f is even, we then have
M) = [ o

- /_ (i FI(d
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The Mellin Transform and the SaS Characteristic Function

@ We now choose f to be a SaS density px, with
¢X(t) = e_Ua|t|a.

@ This means that

Mipx(7) = /0 T O px (O)de

_ rz(z)/oo(—it)_wﬁx(t)dt

—00

e Using the fact that ¢x(t) is real and ¢x(t)* = ¢x(—t), it follows that

Mlpx](v) = M) eos (%) /O h tVpx(t)dt.

s
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The Fourier-Mellin Triangle

o Going a step further, we can identify

/0 " gx(t)dt = Mx](1— )

[(v) cos (5
T

= Mpx](7) = )M[cbx](l —)-
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The Fourier-Mellin Triangle

@ This all can now be summarized by the Fourier-Mellin triangle:

px —2— Mx(v)
| =
¢x ()

[(v) cos ()

Gloxl(v) = Mox](1 — 7).
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The Mellin Transform of SaS Densities

@ We can use the Fourier-Mellin triangle to evaluate the Mellin
transform of Sa$ densities.

@ In particular, we have

r s o0 [e¥e%
Mx () = 0)cos(5) /0 e Tt TV dt

™

_ oYM (y)r (%) o (ﬂ) ‘

TQ 2

@ Note that this method generalizes to any symmetric distribution, and
can also be further generalized to asymmetric distributions.

@ See di Paolo and Pinnola (2012) for more details.
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Recovering the Density: The Inverse Mellin Transform

The Fourier-Mellin triangle provides a convenient way to obtain the
Mellin transform.

@ We can use the Mellin transform of SaS densities to recover the
density.

This approach has been developed in Cottone and Di Paolo (2009)
and Di Paolo and Pinnola (2012).

@ The relevant tool is the inverse Mellin transform:

1 p+ioco B
px(x) = / Mx(7)Ix|"Tdv, x #0.
P

271 ), ioo

Condition:
© ~ must lie in the fundamental strip.
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The Fundamental Strip

@ The fundamental strip is the set of p = Re(~y) for which the Mellin
integral converges.

@ To see when this occurs for the Mellin transform
oo
Mx() = [ px(xp 1o
0

we can use the Fourier-Mellin triangle; i.e.,

[(v) cos (5
T

Mx(v) = )M[¢x](1 —)-

Malcolm Egan (CTU) July 13, 2015 36 /71



The Fundamental Strip

@ In particular, observe that

1 [e%S)
(Mox](1 =) S/O 1.“_’)d1.“+/1 |ox (t)]dkt.

@ Since

ac®

00 1
/ e—oato‘dt: r(a)’
0

it follows that the Mellin transform converges for 0 < p < 1.
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Approximation via the Integral Density Representation

@ The integral density representation

1 p+ioo 3
px(x) = / Mx(7)lx|~"dv, x # 0
P

—ioo

1 o0 .
— 5 | Mo+ in)bel >, x £,

lends itself to approximation.

@ In particular, we can use the trapezoidal approximation

An & _
PX(X)zg Z Mx (i) x| 77,
k——

=—m

where v, = p + ikAn.
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Approximation via the Integral Density Representation

e Di Paolo and Pinnola (2012) investigated the trapezoidal
approximation.

@ For the symmetric Cauchy density (o = 1), they found that for
o = 0.6, choosing An = 0.4, p = 0.5 leads to
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Approximation via the Integral Density Representation

@ For the symmetric Gaussian density (o = 2), Cottone and di Paolo
(2009) found that for 02 =1, choosing An =04, p=0.4, leads to
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Approximation via the Integral Density Representation

@ However, there is a problem when other approximation parameters are
chosen.

o E.g., symmetric Cauchy with 0 = 0.6, choosing An = 0.4, p = 0.2
(vs p =0.5) leads to

06

05 -04 03 -02 -01 0 o1 02 03 0.4 05
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Bounding the Approximation Error

@ To overcome this problem, we need error bounds.
@ There are two sources of error:

@ Truncation error.

@ Discretization error.

in
)
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Bounding the Truncation Error

@ For the truncation error, we need to bound the integral

1 [ o
Erl = \2 / Mo + in) ey
T JmAn

1—p—in
1 Mo+ i)l (T) ' :

T 2
<
22 /mAn

M(p+in)l (1_2_”]> cosh ( )

@ In the case a = 1, we can use

Ix|~*dn.

™

sin(mz)’

rz)r(l1-z) =
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Bounding the Truncation Error

@ This leads to

cosh (%) ‘

sin(m(p + in))

x|7* /°°
Er| < ——
Erl= —— o
—mAn h (%1
+/ .cos (2) dn
e [sin(m(p+ i)

_ 00 i —mAn mn
S|x\ Pﬂ(/ COSh(2)dn+/ COSh(z)dn>

2 man cosh(mn) oo cosh(mn)

@ Observe that for x| > 1, the truncation error bound improves for
larger p.
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Bounding the Discretization Error

@ We now turn to the discretization error.

in
o

P
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Bounding the Discretization Error

@ The discretization error of the trapezoidal rule can be obtained using
the residue theorem.

@ Define

Anp & _
lan(x) = >~ > Mx(yi)lx| 7,
k=—0o0

where v, = p+ iAn.
@ The discretization error is then

DE = |px(x) = Ian(x)].
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Bounding the Discretization Error

@ Under certain regularity conditions, the trapezoidal rule has

2M

DE < e2rc/h _ 1’

where ¢ is a bound on the analytic region of the function being
integrated.

@ In our case, the function is

Mx (7)Ix[™7. (6)
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Bounding the Discretization Error

@ As such,

2M

DE < Grwyian 1’

where
S .
/ |Mx(p + iu— r)|x| 7P~ du < M,
—00

forall p—1<r<0.
o A key point is that the discretization error decays as O(e27(1=P)/An),
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An Important Observation

@ In both the truncation error and the discretization error, the term
x|7*

appears on the numerator.
@ This means that the approximation improves for large |x|.

@ That is, this method can be useful for approximating the tails of Sa$
densities.
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More On Fractional Calculus

@ Earlier in the talk the Riemann-Liouville fractional derivative was
introduced as

R

n—y—1
S [ T O

where v € C and n = [p] + 1, where p = Re(7).

@ Another type of fractional derivative is due to Riesz, given by

1

(D)) == 2 cos(ym/2)

((DLF)(x) + (D2 F)(x))-
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More on Fractional Calculus

@ The Riesz fractional derivative has a strong link to fractional
moments.

e Cottone and Di Paolo (2009) have shown that
(D70x)(0) = —E[[X]"], Re(y) > 0.
@ This can be viewed analogously to the usual result

E[X"] = i"6(0). (7)
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More on Fractional Calculus

@ To prove it, take the Fourier transform of the Riemann-Liouville
fractional derivative.

@ This yields

FI(DLox)(x) = (Fix) Flox](x),

analogous to the integer derivative case.

@ Taking the inverse Fourier transform and setting t to zero yields

(D1x)(0) = E[(FiX)"].

Malcolm Egan (CTU) July 13, 2015 52 /71



More on Fractional Calculus

@ The result
(D7¢x)(0) = —E[|X]"], Re(y) > 0.

then follows by straightforward manipulations.
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Fractional Moments

@ A standard result is that the fractional moments for SaS random
variables are given by

2PHr (241) (-2
v/l (=5)

@ Sometimes it is also useful to compute moments of the form:

oP.

E[|X[P] =

E[|X — "]
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Fractional Moments

o Why? Consider the a-stable noise channel
Y=X+N,

where N ~ 5,(0,0,0).

@ This is a useful model for interference in large scale wireless
communication networks.

@ A key step in deriving an upper bound on the capacity

max [(X;Y)
rx

is to compute moments of the form E[| X — u|P].
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Fractional Moments

@ The problem of finding fractional moments E[|X — p|P] has been
studied by Matsui and Pawlas (2014) in the case o > 1.

@ Their approach relied on the use of the Marchaud fractional derivative

dv A tF(e) — FR)(u)
g D= F oy /_Oo (t— g TER

where v =k + X\, with k e Nand 0 < A < 1.
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Fractional Moments

o Let my 14y =E[|X — p|'].
e Matsui and Pawlas (2014) showed that for Sa.S random variables
with1<1+A<2

1+A
my1+x = Ao [,u /00 u~ (N e~ sin (ﬂ) du
’ sin (AF)F(1—X) Lo Jo o

o
+a/ U A2 cog (M—u> du} .
0 ag

@ We want to extend this result to the case 0 <1+ )\ < 1.
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Fractional Moments

@ To do this we use the identity of Cottone and Di Paolo (2009)
(D7¢x)(0) = —E[[X]"], Re(y) >0

and the definition of the Riesz fractional derivative

L (DI + (D F)(x)).

(D7F)(x) = ~ 2cos(y7/2)

@ This means we only need to compute the individual Riemann-Liouville
fractional derivatives

(£1)"

(DLN0) = £ =5 et

/ L (x T Q) dC
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Fractional Moments

@ In our case, we need to compute

+1 d [* i a a
Y _ = @ipt—0|xF(|

@ This yields

0-p

E[X 4"l = F(1 — p)cos(pm/2) [M /oOo uPen sinuu/o)du

o0
—i-a/ uPlemu" cos(uu/a)du} .
0
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A Summary So Far

@ So far for univariate SaS random variables, we have looked at:
@ The link between the Mellin transform and fractional calculus.
@ Obtained the Fourier-Mellin triangle

px — Mx(v)

=

ox(t)

© Using the integral representation to approximate Sa$ densities.
@ Derived fractional moments E[|X — p|P].
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Extensions to Multivariate Sa$S

@ It is also possible to extend a number of the results to the
multivariate setting.

@ This is achieved via the multivariable Mellin transform and
multivariable fractional calculus.
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Multivariate SaS Random Vectors

@ The definition of SaS random variables can be generalized.

e l.e, a random vector X = (X1,...,X,) is Sa$ if for any A, B > 0,
there is a C > 0 and vector € R" such that

AX®) 4+ BX®@ £ X +d, (8)

and X 4 —X.
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The Characteristic Function

@ For SaS random vectors, we can write the characteristic function in

two ways.
@ In the bivariate case, we have
o
¢(t1; t2) = / eit'xp(Xl,Xz)XmdX}
]RZ
2

[e%

@(t1, 1) = exp {— /Sd_1

Z ti Sk
k

dl'(sl, 52)} .
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The Multivariate Mellin Transform

o By exploiting the link with the Fourier transform, we can generalize
the Mellin transform to RY as

o [ee] d
MA)(s) = /0 /0 (O T "dc. (9)
=1
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The Multivariate Riemann-Liouville Fractional Integral

@ Similarly, we can define the multivariable Riemann-Liouville fractional
integral as

o0 o0 d
(/]Ef)(x)zr(la)/0 /0 Fx+ Q[ de,  (10)
i=1

which is again closely linked to the Mellin transform as

o o d
rEnw= [ [T rFollg e
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The Multivariate Riemann-Liouville Fractional Integral

@ We can also consider the Fourier transform of (17f)(x), which is

(e FA)
FIULA)I(E) ity (12)
@ This yields
d
(126)(0) = E[] (X)) ]- (13)
j=1
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The Multivariate Riemann-Liouville Fractional Integral

o By applying these results to the characteristic function and taking the
inverse Mellin transform, we obtain

d
o0 =5 [ T@ETIEX) G C-0 )
) j=1

@ This yields a third way of representing the characteristic function.

@ This is important because it implies that the characteristic function is
completely described by the fractional moment surface

d
E[[ [Fix) ] (15)
j=1
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@ In the multivariable case, there is the issue of dependence.
@ This can be characterized in two ways:
@ In the density p(x1, x2), for instance, using a copula:

p(x1,x2) = p1(x1)p2(x2)c(Fi(x1), F2(x2))-

@ In the spectral measure I'.
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How can we relate the spectral measure I'(sy, s;) to the dependence
structure in the density p(x1,x2)?
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@ The representation

1

—_— r r

e | TreR)

x E[(—iXy ™) (—iXy )]t "ty Pdtidts.

P(t1, ) =

suggests that this might be possible by studying the surface
E[(=iXy ) (=iXy )],

which completely characterizes the random vector.

@ This remains on-going work.

Malcolm Egan (CTU) July 13, 2015 70 /71



Conclusions

@ We looked at univariate SaS random variables, where we:
@ observed the link between the Mellin transform and fractional calculus.
© obtained the Fourier-Mellin triangle

px —2— Mx(v)
[ 2~
dx(t)
© used the integral representation to approximate SaS densities.
@ derived fractional moments E[|X — ul|P].
@ We then briefly showed that these ideas can be extended to the
multivariable case.
@ Suggested that the complex fractional moments
E[(—iX]; ™)(—iX; 7)] may be useful to help understand dependence
structures.
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