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This Talk in a Nutshell

This talk is about the interaction between:
1 the probability density function of symmetric α-stable (SαS) random

variables;
2 the Fourier transform;
3 and the Mellin transform.
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This Talk in a Nutshell

This interaction is mediated by techniques from fractional calculus.

Many of these ideas have been developed by Di Paolo et al in
1 Cottone and Di Paolo (2009), On the use of fractional calculus for the

probabilistic characterization of random variables.
2 Di Paolo and Pinnola (2012), Riesz fractional integrals and complex

fractional moments for the probabilistic characterization of random
variables.
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This Talk in a Nutshell

The following diagram—the Fourier-Mellin triangle—plays a key role:
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Why α-Stable Random Variables?

Distributions with heavy tails are not well-modeled as Gaussian.

α-stable distributions are a relatively tractable alternative.

P(X > λ) ∼ Cλ−α

Applications:
1 Interference and noise modeling (e.g., in wireless radio

communications).
2 Asset returns in finance.
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Symmetric α-Stable Random Variables

An important sub-class are the symmetric α-stable (SαS) random
variables.

One way SαS random variables arise is the LePage series

X =
∞∑
i=1

r−αi gi ,

where
1 {ri} are the arrival times of the Poisson process with rate 1;

2 {gi} are symmetric random variables X
d
= −X , independent of {ri};

3 E[gαi ] <∞.

In applications this type of sum is called shot noise.
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Symmetric α-Stable Random Variables

A common definition of SαS random variables is via

AX1 + BX2
d
= CX , X

d
= −X ,

where
1 X1,X2 are independent copies of X ;
2 Aα + Bα = Cα, for some α ∈ (0, 2].
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Symmetric α-Stable Random Variables

SαS random variables are also infinitely divisible.

For n ≥ 2, there is a Cn > 0 such that

X1 + · · ·Xn
d
= CnX , X

d
= −X ,

where
1 X1, . . . ,Xn are independent copies of X ;
2 Cn = n1/α.
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Examples of Symmetric α-Stable Random Variables

1 Gaussian distribution (X ∼ S2(σ, 0, 0)):

pX (x) =
1√

4πσ2
e−

x2

4σ2

E[e itX ] = e−σ
2t2

2 Cauchy distribution (X ∼ S1(σ, 0, 0)):

pX (x) =
1

πσ

[
σ2

x2 + σ2

]
E[e itX ] = e−σ|t|

In general, SαS random variables do not have closed form densities.
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The Characteristic Function of SαS Random Variables

While the density of SαS random variables is difficult to work with,
the characteristic function

E[e itX ] =

∫ ∞
−∞

pX (x)e itXdx

is known in closed form.

In particular, let X ∼ Sα(σ, 0, 0). Then,

φX (t) = E[e itX ] = e−σ
α|t|α .

This result is very useful.
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Basic Properties of SαS Random Variables

1 Let X1,X2 be independent with Xi ∼ Sα(σi , 0, 0). Then,

X1 + X2 ∼ Sα
(

(σα1 + σα2 )1/α, 0, 0
)
.

2 Let X ∼ Sα(σ, 0, 0) and a ∈ R. Then,

X + a ∼ Sα(σ, 0, a).

3 Let X ∼ Sα(σ, 0, 0) and a ∈ R \ {0}. Then,

aX ∼ Sα(|a|σ, 0, 0).
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Basic Properties of SαS Random Variables

1 Let X ∼ Sα(σ, 0, 0). Then,

P(X > λ) ∼ σαCα
2
λ−α.

2 Let X ∼ Sα(σ, 0, 0) and 0 < p < α. Then,

E[|X |p] =
2p+1Γ

(
p+1

2

)
Γ
(
− p
α

)
α
√
πΓ
(
−p

2

) σp.
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The Mellin Transform

Instead of taking the Fourier transform (i.e., the characteristic
function), we can consider the Mellin transform.

For α-stable distributions, this was first done by Zolotarev in 1957.

Since SαS densities are absolutely continuous functions, the Mellin
transform is

M[pX (x)](γ) =

∫ ∞
0

pX (x)xγ−1dx , γ ∈ C.

(More generally, the Mellin-Stieltjes transform is required.)
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The Mellin Transform

The Mellin transform can be related to the Fourier transform through
a change of variables.

Consider the operator T : f (x)→ f (ex), f ∈ L1; i.e.,∫ ∞
−∞
|f (x)|dx <∞.

Define the T-norm

‖f ‖Mc =

∫ ∞
0
|f (x)|xc−1|dx , (1)

where c is chosen to ensure convergence for the class of functions f
we are interested in.

Malcolm Egan (CTU) July 13, 2015 14 / 71



The Mellin Transform

L1 functions with finite T-norm∫ ∞
0
|f (x)|xc−1|dx <∞ (2)

form a function space.

On this space, the Fourier transform

F(Tf )(t) =

∫ ∞
−∞

f (ex)e itxdx .

is well defined. (More on this in Butzer and Jansche (1997)).
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The Mellin Transform

Now consider

F [Tf ]

(
η − c

i

)
=

∫ ∞
−∞

f (ex)e(η−c)xdx , c ≥ 0.

Let y = ex , which gives

F(Tf )

(
η − c

i

)
=

∫ ∞
0

f (y)e(η−c) log y 1

y
dy

=

∫ ∞
0

f (y)y−cyη
1

y
dy

=

∫ ∞
0

f ∗(y)yη−1dy , f ∗(y) = f (y)y−c ,

which is the Mellin transform of f ∗(y).
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The Mellin Transform

This means that for functions with finite T-norm

‖f ‖Mc =

∫ ∞
0
|f (x)|xc−1dx , (3)

we can use theorems for the Fourier transform of L1 functions.

E.g., the Fourier inversion theorem (more on this later).
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The Mellin Transform

The Mellin transform has a nice property.

Consider the product of two random variables Z = XY . Then,

M[fZ ](s) =M[fX ](s)M[fY ](s). (4)

This means that the Mellin transform plays a similar role for products
of random variables as the Fourier transform plays for sums.
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The Mellin Transform

The Mellin transform has an intimate link to fractional calculus.

To see this, we first overview some basic ideas in fractional calculus.
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A Brief Overview of Fractional Calculus

The starting point for fractional calculus is to generalize derivatives

dn

dxn
f (x), n ∈ N

to the case where n ∈ R; e.g.,

d
1
2

dx
1
2

f (x).
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A Brief Overview of Fractional Calculus

To see how this might work, consider f (x) = xp.

We have,

dn

dxn
xp = p(p − 1) · · · (p − n + 1)xp−n

=
p!

(p − n)!
xp−n =

Γ(p + 1)

Γ(p − n + 1)
xp−n.

Using the properties of the Gamma function

Γ(x) =

∫ ∞
0

e−ttx−1dt,

it is possible to analytically continue to yield

dq

dxq
xp =

Γ(p + 1)

Γ(p − q + 1)
xp−q,

with q ∈ R (being careful with q = −1,−2, . . .).
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A Brief Overview of Fractional Calculus

An important way of generalizing is via the Riemann-Liouville
fractional integrals

(I γ±f )(x) =
1

Γ(γ)

∫ ∞
0

ζγ−1f (x ∓ ζ)dζ.

The Riemann-Liouville fractional derivatives are then

(Dγ
±f )(x) =

(±1)n

Γ(n − γ)

dn

dxn

∫ ∞
0

ζn−γ−1f (x ∓ ζ)dζ,

where γ ∈ C and n = [ρ] + 1, where ρ = Re(γ).

This agrees with gamma function-based definition for the monomial
example developed in the previous slide.
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A Brief Overview of Fractional Calculus

The Riemann-Liouville fractional integral satisfies the semigroup
property:

Iα+I β+ψ = Iα+β
+ ψ, Iα−I

β
−ψ = Iα+β

− ψ, (5)

where α, β > 0.
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The Link Between Fractional Calculus and the Mellin
Transform

A key observation is the link between the Riemann-Liouville fractional
integral and the Mellin transform.

Recall the Mellin transform is

M[f (x)](γ) =

∫ ∞
0

pX (x)xγ−1dx , γ ∈ C.

The Riemann-Liouville fractional integral is

(I γ±f )(x) =
1

Γ(γ)

∫ ∞
0

ζγ−1f (x ∓ ζ)dζ.

That is,

M[f (x ∓ ζ)](γ) = Γ(γ)(I γ±f )(x).
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A Key Identity

For standard integrals, we have

F
[∫ x

−∞
f (τ)dτ

]
(t) =

F [f ](t)

−it

This generalizes:

F [I γ+f ](t) = (−it)−γF [f ](t).
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A Key Identity

Take 0 < ρ < 1. We need to take the Fourier transform of the
fractional integral; i.e.,

F [I γ+f ](t) =

∫ ∞
−∞

e itx
1

Γ(γ)

∫ ∞
0

ζγ−1f (x − ζ)dζdx .

Some basic manipulations yield

F [I γ+f ](t) =
F [f ](t)

Γ(γ)

∫ ∞
0

e itζζγ−1dζ.

A useful identity tells us that∫ ∞
0

e itζζγ−1 = Γ(γ)(−it)−γ ,

where taking the principle value we understand that

(−it)−γ = exp

(
−γ log |t|+ γπi

2
sgn(t)

)
.
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A Key Identity

Leading us to

F [I γ+f ](t) = (−it)−γF [f ](t).

What does it mean?
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Recovering the Mellin Transform

The observation that

F [I γ+f ](t) = (−it)−γF [f ](t).

means that

(I γ+f )(t) = F−1
[
(−it)−γF [f ](t)

]
=

1

2π

∫ ∞
−∞

e−itx(−it)−γF [f ](t)dt.

Malcolm Egan (CTU) July 13, 2015 28 / 71



Recovering the Mellin Transform

The observation that

F [I γ+f ](t) = (−it)−γF [f ](t).

means that

(I γ+f )(t) = F−1
[
(−it)−γF [f ](t)

]
=

1

2π

∫ ∞
−∞

e−itx(−it)−γF [f ](t)dt.

As such,

(I γ+f )(0) =
1

2π

∫ ∞
−∞

(−it)−γF [f ](t)dt.

Now recall that

Γ(γ)(I γ+f )(x) =

∫ ∞
0

ζγ−1f (x − ζ)dζ.
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Recovering the Mellin Transform

Putting it all together:∫ ∞
0

ζγ−1f (−ζ)dζ =
Γ(γ)

2π

∫ ∞
−∞

(−it)−γF [f ](t)dt.

When f is even, we then have

M[f ](γ) =

∫ ∞
0

ζγ−1f (ζ)dζ

=
Γ(γ)

2π

∫ ∞
−∞

(−it)−γF [f ](t)dt.
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The Mellin Transform and the SαS Characteristic Function

We now choose f to be a SαS density pX , with

φX (t) = e−σ
α|t|α .

This means that

M[pX ](γ) =

∫ ∞
0

ζγ−1pX (ζ)dζ

=
Γ(γ)

2π

∫ ∞
−∞

(−it)−γφX (t)dt

Using the fact that φX (t) is real and φX (t)∗ = φX (−t), it follows that

M[pX ](γ) =
Γ(γ) cos

(γπ
2

)
π

∫ ∞
0

t−γφX (t)dt.
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The Fourier-Mellin Triangle

Going a step further, we can identify∫ ∞
0

t−γφX (t)dt =M[φX ](1− γ)

⇒M[pX ](γ) =
Γ(γ) cos

(γπ
2

)
π

M[φX ](1− γ).
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The Fourier-Mellin Triangle

This all can now be summarized by the Fourier-Mellin triangle:

where

G[φX ](γ) =
Γ(γ) cos

(γπ
2

)
π

M[φX ](1− γ).
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The Mellin Transform of SαS Densities

We can use the Fourier-Mellin triangle to evaluate the Mellin
transform of SαS densities.

In particular, we have

MX (γ) =
Γ(γ) cos

(γπ
2

)
π

∫ ∞
0

e−σ
αtαt−γdt

=
σγ−1Γ(γ)Γ

(
1−γ
α

)
πα

cos
(γπ

2

)
.

Note that this method generalizes to any symmetric distribution, and
can also be further generalized to asymmetric distributions.

See di Paolo and Pinnola (2012) for more details.
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Recovering the Density: The Inverse Mellin Transform

The Fourier-Mellin triangle provides a convenient way to obtain the
Mellin transform.

We can use the Mellin transform of SαS densities to recover the
density.

This approach has been developed in Cottone and Di Paolo (2009)
and Di Paolo and Pinnola (2012).

The relevant tool is the inverse Mellin transform:

pX (x) =
1

2πi

∫ ρ+i∞

ρ−i∞
MX (γ)|x |−γdγ, x 6= 0.

Condition:
1 γ must lie in the fundamental strip.

Malcolm Egan (CTU) July 13, 2015 35 / 71



The Fundamental Strip

The fundamental strip is the set of ρ = Re(γ) for which the Mellin
integral converges.

To see when this occurs for the Mellin transform

MX (γ) =

∫ ∞
0

pX (x)xγ−1dx ,

we can use the Fourier-Mellin triangle; i.e.,

MX (γ) =
Γ(γ) cos

(γπ
2

)
π

M[φX ](1− γ).
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The Fundamental Strip

In particular, observe that

|M[φX ](1− γ)| ≤
∫ 1

0
t−ρdt +

∫ ∞
1
|φX (t)|dt.

Since ∫ ∞
0

e−σ
αtαdt =

Γ
(

1
α

)
ασα

,

it follows that the Mellin transform converges for 0 < ρ < 1.
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Approximation via the Integral Density Representation

The integral density representation

pX (x) =
1

2πi

∫ ρ+i∞

ρ−i∞
MX (γ)|x |−γdγ, x 6= 0

=
1

2π

∫ ∞
−∞

MX (ρ+ iη)|x |−ρ−iηdη, x 6= 0,

lends itself to approximation.

In particular, we can use the trapezoidal approximation

pX (x) ≈ ∆η

2π

m∑
k=−m

MX (γk)|x |−γk ,

where γk = ρ+ ik∆η.
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Approximation via the Integral Density Representation

Di Paolo and Pinnola (2012) investigated the trapezoidal
approximation.
For the symmetric Cauchy density (α = 1), they found that for
σ = 0.6, choosing ∆η = 0.4, ρ = 0.5 leads to
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Approximation via the Integral Density Representation

For the symmetric Gaussian density (α = 2), Cottone and di Paolo
(2009) found that for σ2 = 1, choosing ∆η = 0.4, ρ = 0.4, leads to
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Approximation via the Integral Density Representation

However, there is a problem when other approximation parameters are
chosen.
E.g., symmetric Cauchy with σ = 0.6, choosing ∆η = 0.4, ρ = 0.2
(vs ρ = 0.5) leads to
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Bounding the Approximation Error

To overcome this problem, we need error bounds.
There are two sources of error:

1 Truncation error.
2 Discretization error.

Malcolm Egan (CTU) July 13, 2015 42 / 71



Bounding the Truncation Error

For the truncation error, we need to bound the integral

|ET ,R | =

∣∣∣∣ 1

2π

∫ ∞
m∆η

MX (ρ+ iη)|x |−ρ−iηdη
∣∣∣∣

≤ 1

2π

∫ ∞
m∆η

∣∣∣∣∣∣
Γ(ρ+ iη)Γ

(
1−ρ−iη

α

)
πα

cos

(
(ρ+ iη)π

2

)
|x |−ρ−iη

∣∣∣∣∣∣ dη
≤ 1

2π2α

∫ ∞
m∆η

∣∣∣∣Γ(ρ+ iη)Γ

(
1− ρ− iη

α

)
cosh

(πη
2

)∣∣∣∣ |x |−ρdη.
In the case α = 1, we can use

Γ(z)Γ(1− z) =
π

sin(πz)
.
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Bounding the Truncation Error

This leads to

|ET | ≤
|x |−ρ

2π

(∫ ∞
m∆η

∣∣∣∣∣ cosh
(πη

2

)
sin(π(ρ+ iη))

∣∣∣∣∣ dη
+

∫ −m∆η

−∞

∣∣∣∣∣ cosh
(πη

2

)
sin(π(ρ+ iη))

∣∣∣∣∣ dη
)

≤ |x |
−ρ√2

2π

(∫ ∞
m∆η

cosh
(πη

2

)
cosh(πη)

dη +

∫ −m∆η

−∞

cosh
(πη

2

)
cosh(πη)

dη

)

Observe that for |x | > 1, the truncation error bound improves for
larger ρ.
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Bounding the Discretization Error

We now turn to the discretization error.
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Bounding the Discretization Error

The discretization error of the trapezoidal rule can be obtained using
the residue theorem.

Define

I∆η(x) =
∆η

2π

∞∑
k=−∞

MX (γk)|x |−γk ,

where γk = ρ+ i∆η.

The discretization error is then

DE = |pX (x)− I∆η(x)|.
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Bounding the Discretization Error

Under certain regularity conditions, the trapezoidal rule has

DE ≤ 2M

e2πc/h − 1
,

where c is a bound on the analytic region of the function being
integrated.

In our case, the function is

MX (γ)|x |−γ . (6)
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Bounding the Discretization Error

As such,

DE ≤ 2M

e2π(1−ρ)/∆η − 1
,

where ∫ ∞
−∞

∣∣MX (ρ+ iu − r)|x |−ρ−iu+r
∣∣ du ≤ M,

for all ρ− 1 < r < 0.

A key point is that the discretization error decays as O(e−2π(1−ρ)/∆η).
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An Important Observation

In both the truncation error and the discretization error, the term

|x |−ρ

appears on the numerator.

This means that the approximation improves for large |x |.
That is, this method can be useful for approximating the tails of SαS
densities.
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More On Fractional Calculus

Earlier in the talk the Riemann-Liouville fractional derivative was
introduced as

(Dγ
±f )(x) =

(±1)n

Γ(n − γ)

dn

dxn

∫ ∞
0

ζn−γ−1f (x ∓ ζ)dζ,

where γ ∈ C and n = [ρ] + 1, where ρ = Re(γ).

Another type of fractional derivative is due to Riesz, given by

(Dγf )(x) = − 1

2 cos(γπ/2)
((Dγ

+f )(x) + (Dγ
−f )(x)).

Malcolm Egan (CTU) July 13, 2015 50 / 71



More on Fractional Calculus

The Riesz fractional derivative has a strong link to fractional
moments.

Cottone and Di Paolo (2009) have shown that

(DγφX )(0) = −E[|X |γ ], Re(γ) > 0.

This can be viewed analogously to the usual result

E[X n] = i−nφ
(n)
X (0). (7)
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More on Fractional Calculus

To prove it, take the Fourier transform of the Riemann-Liouville
fractional derivative.

This yields

F [(Dγ
±φX )](x) = (∓ix)γF [φX ](x),

analogous to the integer derivative case.

Taking the inverse Fourier transform and setting t to zero yields

(Dγ
±φX )(0) = E[(∓iX )γ ].
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More on Fractional Calculus

The result

(DγφX )(0) = −E[|X |γ ], Re(γ) > 0.

then follows by straightforward manipulations.
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Fractional Moments

A standard result is that the fractional moments for SαS random
variables are given by

E[|X |p] =
2p+1Γ

(
p+1

2

)
Γ
(
− p
α

)
α
√
πΓ
(
−p

2

) σp.

Sometimes it is also useful to compute moments of the form:

E[|X − µ|p].
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Fractional Moments

Why? Consider the α-stable noise channel

Y = X + N,

where N ∼ Sα(σ, 0, 0).

This is a useful model for interference in large scale wireless
communication networks.

A key step in deriving an upper bound on the capacity

max
rX

I (X ;Y )

is to compute moments of the form E[|X − µ|p].
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Fractional Moments

The problem of finding fractional moments E[|X − µ|p] has been
studied by Matsui and Pawlas (2014) in the case α > 1.

Their approach relied on the use of the Marchaud fractional derivative

dγ

dtγ
f (t) =

λ

Γ(1− λ)

∫ t

−∞

f (k)(t)− f (k)(u)

(t − u)1+λ
du, t ∈ R,

where γ = k + λ, with k ∈ N and 0 < λ < 1.
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Fractional Moments

Let mµ,1+λ = E[|X − µ|1+λ].

Matsui and Pawlas (2014) showed that for SαS random variables
with 1 < 1 + λ ≤ 2

mµ,1+λ =
λσ1+λ

sin
(
λπ
2

)
Γ(1− λ)

[
µ

σ

∫ ∞
0

u−(1+λ)e−u
α

sin
(µu
σ

)
du

+α

∫ ∞
0

uα−λ−2e−u
α

cos
(µu
σ

)
du

]
.

We want to extend this result to the case 0 < 1 + λ < 1.
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Fractional Moments

To do this we use the identity of Cottone and Di Paolo (2009)

(DγφX )(0) = −E[|X |γ ], Re(γ) > 0

and the definition of the Riesz fractional derivative

(Dγf )(x) = − 1

2 cos(γπ/2)
((Dγ

+f )(x) + (Dγ
−f )(x)).

This means we only need to compute the individual Riemann-Liouville
fractional derivatives

(Dγ
±f )(x) =

(±1)n

Γ(n − γ)

dn

dxn

∫ ∞
0

ζn−γ−1f (x ∓ ζ)dζ,
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Fractional Moments

In our case, we need to compute

(Dγ
±f )(x) =

±1

Γ(1− γ)

d

dx

∫ ∞
0

ζ−γe iµt−σ
α|x∓ζ|αdζ,

This yields

E[|X + µ|p] =
σp

Γ(1− p) cos(pπ/2)

[
µ

∫ ∞
0

u−pe−u
α

sin(µu/σ)du

+α

∫ ∞
0

uα−p−1e−u
α

cos(µu/σ)du

]
.
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A Summary So Far

So far for univariate SαS random variables, we have looked at:
1 The link between the Mellin transform and fractional calculus.
2 Obtained the Fourier-Mellin triangle

3 Using the integral representation to approximate SαS densities.
4 Derived fractional moments E[|X − µ|p].
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Extensions to Multivariate SαS

It is also possible to extend a number of the results to the
multivariate setting.

This is achieved via the multivariable Mellin transform and
multivariable fractional calculus.
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Multivariate SαS Random Vectors

The definition of SαS random variables can be generalized.

I.e., a random vector X = (X1, . . . ,Xn) is SαS if for any A,B > 0,
there is a C > 0 and vector ∈ Rn such that

AX(1) + BX(2) d
= CX + d, (8)

and X
d
= −X.
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The Characteristic Function

For SαS random vectors, we can write the characteristic function in
two ways.

In the bivariate case, we have
1

φ(t1, t2) =

∫
R2

e it·xp(x1, x2)dx1dx2.

2

φ(t1, t2) = exp

{
−
∫
Sd−1

∣∣∣∣∣∑
k

tksk

∣∣∣∣∣
α

dΓ(s1, s2)

}
.
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The Multivariate Mellin Transform

By exploiting the link with the Fourier transform, we can generalize
the Mellin transform to Rd as

M[f ](s) =

∫ ∞
0
· · ·
∫ ∞

0
f (ζ)

d∏
i=1

ζsi−1
i dζ. (9)
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The Multivariate Riemann-Liouville Fractional Integral

Similarly, we can define the multivariable Riemann-Liouville fractional
integral as

(I γ±f )(x) =
1

Γ(α)

∫ ∞
0
· · ·
∫ ∞

0
f (x ∓ ζ)

d∏
i=1

ζγi−1
i dζ, (10)

which is again closely linked to the Mellin transform as

Γ(α)(I γ±f )(x) =

∫ ∞
0
· · ·
∫ ∞

0
f (x ∓ ζ)

d∏
i=1

ζγi−1
i dζ. (11)
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The Multivariate Riemann-Liouville Fractional Integral

We can also consider the Fourier transform of (I γ±f )(x), which is

F [(I γ±f )(x)](t) =
F [f ](t)∏d
j=1(∓it)γi

. (12)

This yields

(I γ±f )(0) = E[
d∏

j=1

(∓iXj)
−γj ]. (13)
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The Multivariate Riemann-Liouville Fractional Integral

By applying these results to the characteristic function and taking the
inverse Mellin transform, we obtain

φ(±ζ) =
1

2πi

∫
ρ+iRd

Γ(γ)E[
d∏

j=1

(∓iXj)
−γj ]ζ−γdγ, ζ � 0. (14)

This yields a third way of representing the characteristic function.

This is important because it implies that the characteristic function is
completely described by the fractional moment surface

E[
d∏

j=1

(∓iXj)
−γj ] (15)
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A Question

In the multivariable case, there is the issue of dependence.

This can be characterized in two ways:
1 In the density p(x1, x2), for instance, using a copula:

p(x1, x2) = p1(x1)p2(x2)c(F1(x1),F2(x2)).

2 In the spectral measure Γ.
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A Question

How can we relate the spectral measure Γ(s1, s2) to the dependence
structure in the density p(x1, x2)?
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A Question

The representation

φ(t1, t2) =
1

(2πi)2

∫
ρ+iR2

Γ(γ1)Γ(γ2)

× E[(−iX−γ1
1 )(−iX−γ2

2 )]t−γ1
1 t−γ2

2 dt1dt2.

suggests that this might be possible by studying the surface

E[(−iX−γ1
1 )(−iX−γ2

2 )],

which completely characterizes the random vector.

This remains on-going work.
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Conclusions

We looked at univariate SαS random variables, where we:
1 observed the link between the Mellin transform and fractional calculus.
2 obtained the Fourier-Mellin triangle

3 used the integral representation to approximate SαS densities.
4 derived fractional moments E[|X − µ|p].

We then briefly showed that these ideas can be extended to the
multivariable case.

Suggested that the complex fractional moments
E[(−iX−γ1

1 )(−iX−γ2
2 )] may be useful to help understand dependence

structures.
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