Vector Quantization Codebook Design for Multiuser MIMO

Malcolm Egan

Faculty of Electrical Engineering, Czech Technical University in Prague

malcolm.egan@agents.fel.cvut.cz

July 14, 2015

- Side information in the wireless cellular downlink.
- What is multiuser MIMO?
- Side information design for MU-MIMO.
- Understanding the effect of limited feedback in MU-MIMO.
- Structured vector quantizers for MU-MIMO with limited feedback.

Side Information Networks

- Collection of measurements/observations in order to make a decision is a fundamental component of many systems.
- Example: a network of wireless heat sensors measuring the temperature of a room.

- Data collection is not usually the point of the system ⇒ it is *side information*.
- How the measurements are collected, compressed and shared is not optimized for its own sake.
- Instead, the goal is to improve the decision making capabilities of the system.
- Example: the network of wireless heat sensors is designed to control the temperature of the room via a thermostat.
 - The level of accuracy in room temperature required determines the number and quality of the sensors.
 - The level of accuracy required also affects the design of the wireless links.

• In this talk, we are interested in the downlink of wireless cellular networks.

- The goal of the downlink is to provide users with the data they have requested.
 - E.g., calls, SMS, or internet data.
- Side information plays an important role in optimizing the transmission from base stations (transmitters) to users (receivers).

- The side information consists of observations, including:
 - channel state (e.g., signal attenuation)
 - Q queue state (e.g., number of packets in the queue, or the packet delay)
- The side information is often also shared via wireless links.
- The wireless side information links are fundamentally different to the main data link between base stations and users.
 - $\bullet \Rightarrow$ not all wireless links in the network have the same purpose.

Side Information in the Wireless Cellular Downlink

The side information network is designed to optimize the main data transmissions from base stations to users.

What is Multiuser MIMO?

- In modern wireless cellular networks, multiple antennas play an important role.
- Multiuser multiple-input multiple-output (MU-MIMO) plays a key role.

- Why?
 - **1** Is a key component of recent standards (e.g., LTE, LTE-A).
 - Forms the basis for advanced interference mitigation techniques (e.g., CoMP, network MIMO).

The MU-MIMO System Model

The MU-MIMO System Model

- The MU-MIMO system consists of three basic components:
 - **1** a N_t antenna base station;
 - 2 N_U users, each with a single antenna;
 - **3** a $N_U \times N_t$ channel matrix **H**.

- The base station seeks to transmit a data vector $\mathbf{u} \in \mathbb{C}^{N_U}$
 - Each element of **u** is the data for a user.
 - The data vector **u** is assumed to be Gaussian $(\mathbf{u} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}))$.
- The base station can perform linear data processing.
- The received vector is then

$$\mathbf{y} = \mathbf{HPVu} + \mathbf{n},\tag{1}$$

where

- **Q** $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_{N_U}]$ is the linear data processing at the base station;
- **2** $\mathbf{P} = \operatorname{diag}(p_1/\|\mathbf{v}_1\|^2, \dots, p_{N_t}/\|\mathbf{v}_{N_t}\|^2)$ of transmit powers for each antenna.
- **3** $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_{N_U}]^T$ is the channel matrix;
- **9 n** is Gaussian noise $(\mathbf{n} \sim C\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}))$

The Role of Side Information in MU-MIMO

- Without linear processing, there is inter-user interference.
- Suppose V = I. This means that

$$y_i = h_{i,i}u_i + \sum_{j \neq i} h_j u_j + n_i.$$
 (2)

- To mitigate the interference, we can exploit side information.
 - Known as channel state information at the transmitter.
- For instance, suppose the channel matrix H is known to the base station.
- Choose $\mathbf{V} = \mathbf{H}^{-1}$, which means that

$$y_i = u_i + n_i. \tag{3}$$

The Role of Side Information in MU-MIMO

- There are two problems with using this approach:
 - There is a power constraint, which means that

$$\sum_{i=1}^{N_t} p_i \le P_{\max}.$$
 (4)

We need to obtain the channel matrix H at the transmitter.

Shared Feedback Channel

- We can only obtain a quantized (compressed) version of **H** at the base station.
- This is known as MU-MIMO with *limited feedback*.
- That is, we have the quantized channel matrix $\hat{\mathbf{H}}.$
- The received signal is then

$$\mathbf{y} = \mathbf{H}\mathbf{P}\hat{\mathbf{H}}^{-1}\mathbf{u} + \mathbf{n}.$$
 (5)

The Design Objective

- The goal of the system is to maximize the average total data rate sent to all users.
- By Shannon's theorem for the Gaussian channel, the total data rate for a given **H** is given by

$$R = \sum_{i=1}^{N_U} \log \left(1 + \frac{|\mathbf{h}_i^{\dagger} \mathbf{v}_i|^2 \frac{p_i}{\|\mathbf{v}_i\|^2}}{\sigma^2 + \sum_{j=1, j \neq i}^{n} |\mathbf{h}_i^{\dagger} \mathbf{v}_j|^2 \frac{p_j}{\|\mathbf{v}_j\|^2}} \right),$$
(6)

where the power levels p_i are chosen to satisfy

$$\sum_{i=1}^{N_t} p_i \le P_{\max}.$$
 (7)

Our problem is to design the quantization scheme to determine $\hat{\mathbf{H}}$ so that the expected rate $\mathbb{E}[R]$ is maximized.

• This involves determining how to quantize each user's channel vector $\mathbf{h}_{i}^{\dagger}.$

• To quantize each user's channel vector \mathbf{h}_{i}^{\dagger} , we consider two parts:

- **1** the *channel gain*, $\|\mathbf{h}_i^{\dagger}\|$;
- 2 and the channel shape

$$\tilde{\mathbf{h}}_{i}^{\dagger} = \frac{\mathbf{h}_{i}^{\dagger}}{\|\mathbf{h}_{i}^{\dagger}\|}.$$
(8)

- Quantizing the channel gain is a *scalar quantization* problem.
 - This only requires 3 bits to obtain near optimal performance.
- Quantizing the channel shape is a *vector quantization* problem.
 - This is our focus.

• Suppose we have a codebook of vectors $\mathcal{F} = [\mathbf{f}_1, \dots, \mathbf{f}_N]$, $\mathbf{f}_i \in \mathbb{S}^{N_t - 1}$.

- I.e., codewords lie on the unit sphere in N_t dimensions.
- This space can be identified as the complex projective space CP^{Nt-1} or Grassmannian manifold G(Nt, 1).
- Now, suppose user *i*'s channel shape is $\tilde{\mathbf{h}}_{i}^{\dagger}$.
- We can quantize the channel shape via

$$k_i^* = \arg \max_{k \in 1, 2, \dots, N} |\tilde{\mathbf{h}}_i^{\dagger} \mathbf{f}_k|^2.$$
(9)

There are two key design problems:

- How big should the codebook be (i.e., N)?
- I How do we construct the codebook?

- This question depends on two factors:
 - how the codebook is constructed;
 - 2 and how the power levels are chosen.

How Big Should the Codebook Be?

- One approach is to make the following assumptions:
 - () the channel shape $\tilde{\mathbf{h}}_i$ is drawn from an isotropic distribution on the unit sphere
 - 2 the codebook is drawn from an isotropic distribution on the unit sphere;
 - and the power is equal for each antenna, which means that

$$p_i = \frac{P_{\max}}{N_t}.$$
 (10)

 This case was studied in [Jindal2006], where it was shown that choosing

$$N = 2^{(N_t - 1)\log_2 P_{\max}}$$
(11)

ensures that the rate loss (relative to perfect CSIT) is upper bounded by N_t bits/s/Hz.

The Case of Optimal Power Control

- It is also possible to gain insight into the effect of quantization using optimal power control, when the quantization error is specified.
- That is, power is allocated by

$$\begin{aligned} R^*(\operatorname{vec}(\hat{\mathbf{V}})) &= \max_{p_1, \dots, p_n} \\ &\sum_{i=1}^n \log \left(1 + \frac{|\mathbf{h}_i^{\dagger} \mathbf{v}_i|^2 \frac{p_i}{\|\mathbf{v}_i\|^2}}{\sigma^2 + \sum_{j=1, j \neq i}^n |\mathbf{h}_i^{\dagger} \mathbf{v}_j|^2 \frac{p_j}{\|\mathbf{v}_j\|^2}} \right) \\ \text{subject to} \quad \sum_{i=1}^n p_i \leq p_{\max} \\ &p_i \geq 0, \quad i = 1, \dots, n, \end{aligned}$$

- We can use techniques from optimization problems with perturbations.
 - Note that the perturbations are in $\mathbb{C}^{N_t N_u}$.

• Observe that we can write the Taylor series expansion

$$R^*(\operatorname{vec}(\hat{\mathbf{W}})) = R^*(\operatorname{vec}(\mathbf{W})) + D_{\tilde{\mathbf{d}}}R^*(\operatorname{vec}(\mathbf{W})) \|\mathbf{d}\| + o(\|\mathbf{d}\|^2),$$
(12)

where the directional derivative is given by

$$D_{\mathbf{e}}R^*(\operatorname{vec}(\mathbf{W})) = \lim_{t \to 0} \frac{R^*(\operatorname{vec}(\mathbf{W}) + t\tilde{\mathbf{d}}) - R^*(\operatorname{vec}(\mathbf{W})}{t}.$$
 (13)

• This can be used to give a rate loss bound

$$|R^*(\operatorname{vec}(\hat{\mathbf{W}})) - R^*(\operatorname{vec}(\mathbf{W}))| \le |D_{\tilde{\mathbf{d}}}R^*(\operatorname{vec}(\mathbf{W}))| \|\mathbf{d}\| + |o(\|\mathbf{d}\|^2)|,$$
(14)

The Case of Optimal Power Control

- The key difficulty is to obtain the directional derivative D_d R^{*}(vec(W)).
- To obtain this we have proved a Danskin-type theorem.
- A key feature of our theorem is that it is in terms of Wirtinger derivatives:

$$\frac{\partial}{\partial z_i} f(z_0) = \frac{1}{2} \left(\frac{\partial}{\partial x_i} f(z_0) - i \frac{\partial}{\partial y_i} f(z_0) \right)$$
$$\frac{\partial}{\partial z_i^*} f(z_0) = \frac{1}{2} \left(\frac{\partial}{\partial x_i} f(z_0) + i \frac{\partial}{\partial y_i} f(z_0) \right),$$

with

$$\frac{\partial f}{\partial \mathbf{z}} = \begin{bmatrix} \frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n} \end{bmatrix},$$
$$\frac{\partial f}{\partial \mathbf{z}^*} = \begin{bmatrix} \frac{\partial f}{\partial z_1^*}, \dots, \frac{\partial f}{\partial z_n^*} \end{bmatrix}.$$
(15)

Theorem

Let $m, n, k \in \mathbb{N}$, $f : \mathbb{R}^m \times \mathbb{C}^{nk} \to \mathbb{R}$ $((\mathbf{x}, \mathbf{h}) \mapsto f)$ be a continuous function in $\mathbb{R}^m \times \mathbb{C}^{nk}$ and \mathcal{B} be a compact subset of \mathbb{R}^m . Denote $S(\mathbf{h}_0)$ as the set of $\mathbf{x} \in \mathcal{B}$ that minimizes $f(\mathbf{x}, \mathbf{h}_0)$ with \mathbf{h}_0 fixed. Suppose that $D_{\mathbf{h}}f(\mathbf{x}, \mathbf{h})$ exists and is continuous in $\mathbb{R}^m \times \mathbb{C}^{nk}$. Then, the optimal value function

$$v(\mathbf{h}) = \inf_{\mathbf{x} \in \mathcal{B}} f(\mathbf{x}, \mathbf{h})$$
(16)

is directionally differentiable in the direction $\tilde{d}\in\mathbb{C}^{nk}$, $\|\tilde{d}\|=1$, and

$$D_{\tilde{\mathbf{d}}} v(\mathbf{h}_0) = \min_{\mathbf{x} \in S(\mathbf{h}_0)} \frac{\partial f}{\partial \mathbf{h}}(\mathbf{x}, \mathbf{h}_0) \tilde{\mathbf{d}} + \frac{\partial f}{\partial \mathbf{h}^*}(\mathbf{x}, \mathbf{h}_0) \tilde{\mathbf{d}}^*.$$
(17)

The Case of Optimal Power Control

 Observe that in the case of perfect CSI, the power control problem reduces to

$$R^{*}(\operatorname{vec}(\mathbf{W})) = \max_{p_{1},...,p_{n}} \sum_{i=1}^{n} \log \left(1 + \frac{p_{i}}{\sigma^{2} \|\mathbf{w}_{i}\|^{2}}\right)$$
subject to
$$\sum_{i=1}^{n} p_{i} \leq p_{\max}$$

$$p_{i} \geq 0, \quad i = 1, ..., n.$$
(18)

 This problem is convex ⇒ we only need to compute the directional derivative at the optimal solution

$$\boldsymbol{p}_{i,opt} = \left(\mu - \sigma^2 \|\boldsymbol{w}_i\|^2\right)^+, \qquad (19)$$

so that $\sum_{i=1}^{n} (\mu - \sigma^2 \|\mathbf{w}_i\|^2)^+ \le p_{\max}$ and $\mu \ge 0$ is satisfied.

• From these results, we can compute the rate loss bound

$$|R^*(\operatorname{vec}(\widehat{\mathbf{W}})) - R^*(\operatorname{vec}(\mathbf{W}))| \le |D_{\widetilde{\mathbf{d}}}R^*(\operatorname{vec}(\mathbf{W}))| \|\mathbf{d}\| + |o(\|\mathbf{d}\|^2)|,$$
(20)

• A key observation is that for a sufficiently small perturbation $\|\mathbf{d}\|$, the rate loss scales with $\|\mathbf{d}\|$.

- So far, we have addressed the first key design problem:
 - How big should the codebook be?
- We now turn to the second key design problem.

How do we construct the quantization codebook $\mathcal{F} = [\mathbf{f}_1, \dots, \mathbf{f}_N]$?

Codebook Design Criteria

- The goal of codebook design (i.e., \mathcal{F}) is to maximize the average data rate.
- This is difficult, so we resort to optimizing bounds.
- An important design criterion is the *Grassmannian criterion*:

$$\max_{\mathcal{F}} \min_{i \neq j} 1 - |\mathbf{f}_i^{\dagger} \mathbf{f}_j|^2.$$

- This maximizes the distance between codewords in the codebook \mathcal{F} .
- An alternative approach is to minimize the *expected square* correlation:

$$\min_{\mathcal{F}} \sum_{i=1}^{N} \sum_{j=1}^{N} |\mathbf{f}_{i}^{\dagger} \mathbf{f}_{j}|^{2} \mu(\mathbf{f}_{i}) \mu(\mathbf{f}_{j}),$$

where $\mu(\cdot)$ is the Haar measure on $\mathcal{U}(N_t)$.

How Do We Optimize the Design Criteria?

- To optimize the design criteria, we need to optimize over codebooks (i.e., sets of vectors in CP^{Nt-1}.
- In fact, there is more structure: *codebooks are frames*.

Definition

A sequence $\Phi = (\phi_i)_{i=1,...,N} \in \mathbb{C}^{N_t}$ is a frame for \mathbb{C}^{N_t} , if there exists constants $0 < A \leq B < \infty$ such that

$$A \|\mathbf{x}\|^2 \leq \sum_{i=1}^N |\langle \mathbf{x}, \phi_i \rangle|^2 \leq B \|\mathbf{x}\|^2,$$

for all $\mathbf{x} \in \mathbb{C}^{N_t}$. A frame is *tight* if A = B and unit norm if $\|\phi_i\| = 1$ for all *i*.

• A key result in frame theory is that the Grassmannian criterion

$$\max_{\mathcal{F}} \min_{i \neq j} 1 - |\mathbf{f}_i^{\dagger} \mathbf{f}_j|^2.$$

is optimized by the equiangular tight frames, where

$$|\mathbf{f}_i^{\dagger}\mathbf{f}_j|^2 = \frac{N - N_t}{N_t(N-1)}, \ i \neq j.$$

- However, ETFs only exist for $N \le N_t^2 \Rightarrow$ not suitable for codebooks with large N.
- For $N > N_t^2$, we need an alternative approach.

- Constructing codebooks that optimize the Grassmannian criterion is difficult.
- An alternative approach is to minimize the ESC

$$ESC = \sum_{i=1}^{N} \sum_{j=1}^{N} |\mathbf{f}_{i}^{\dagger}\mathbf{f}_{j}|^{2} \mu(\mathbf{f}_{i}) \mu(\mathbf{f}_{j}),$$

which has more (easier to find) solutions.

Theorem

A locally optimal solution to the ESC minimization is the frame Φ satisfying:

- the probability of selecting the i-th codeword is given by μ(f_i) = ¹/_N;
 i.e., all codewords are equally likely;
- **2** the frame Φ is tight.

ESC Optimal Frames

• A corollary is that for a locally optimal codebook

$$ESC = \frac{1}{N_t}.$$

 This condition is achieved when the conditions in the theorem holds. That is,

1

$$\mu(\mathbf{f}_i) = \frac{1}{N};$$

2 the codebook $\mathcal{F} = [\mathbf{f}_1, \dots, \mathbf{f}_N]$ is tight; i.e.,

$$\mathcal{F}\mathcal{F}^{\dagger}=rac{N}{N_{t}}\mathbf{I}.$$

It is also easy to check numerically.

• An important class of frames optimizes the ESC.

Theorem

If U_1, \ldots, U_N is an algebraic group of unitary matrices (with matrix multiplication as the operation), $\phi \in \mathbb{C}^{N_t}$, $\|\phi\| = 1$, and the frame Φ with elements

 $[U_1\phi,\ldots,U_N\phi]$

is a tight frame. Then, Φ minimizes the ESC.

An Explicit Construction

- Consider the group $SL_2(\mathbb{F}_3)$.
- This has a unitary representation with generator matrices

$$A = \frac{e^{10\pi i/8}}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ i & -1 \end{array} \right),$$

$$P=\left(\begin{array}{cc}i&0\\0&-i\end{array}\right),$$

$$Q=\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)$$

Construct the group as

$$A^{s}P^{i}Q^{p}, s = 0, 1, 2, i = 0, 1, 2, 3, p = 0, 1.$$

The choice of

$$\phi = \frac{1}{\sqrt{2}} [1, 1]^T$$

yields a tight frame.

• We can then obtain a codebook as

$$\mathcal{F} = \frac{1}{\sqrt{2}} \left[[1, -1]^T, [-1, -1]^T, [0, 1-i]^T, [1+i, 0]^T, [-1, i]^T, [-i, 1]^T \right]$$

• This codebook minimizes the ESC.

A Performance Comparison: $N_t = N_U = 2$, 6 codewords

A Performance Comparison: $N_t = N_U = 2$, 60 codewords

- We have considered the problem of designing how to provide side information in MU-MIMO.
- The basic problem is to construct vector quantization codebooks.
- There are two subproblems:
 - How big should the codebook be?
 - How to construct the codebook?
- We proposed a codebook construction technique based on group representation theory.
- Our construction can perform close to optimal.