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Outline of the Talk

1 Side information in the wireless cellular downlink.

2 What is multiuser MIMO?

3 Side information design for MU-MIMO.

4 Understanding the effect of limited feedback in MU-MIMO.

5 Structured vector quantizers for MU-MIMO with limited feedback.
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Side Information Networks

Collection of measurements/observations in order to make a decision
is a fundamental component of many systems.

Example: a network of wireless heat sensors measuring the
temperature of a room.
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Side Information Network Design

Data collection is not usually the point of the system ⇒ it is side
information.

How the measurements are collected, compressed and shared is not
optimized for its own sake.

Instead, the goal is to improve the decision making capabilities of the
system.

Example: the network of wireless heat sensors is designed to control
the temperature of the room via a thermostat.

The level of accuracy in room temperature required determines the
number and quality of the sensors.
The level of accuracy required also affects the design of the wireless
links.
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The Wireless Cellular Downlink

In this talk, we are interested in the downlink of wireless cellular
networks.
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Side Information in the Wireless Cellular Downlink

The goal of the downlink is to provide users with the data they have
requested.

E.g., calls, SMS, or internet data.

Side information plays an important role in optimizing the
transmission from base stations (transmitters) to users (receivers).
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Side Information in the Wireless Cellular Downlink

The side information consists of observations, including:
1 channel state (e.g., signal attenuation)
2 queue state (e.g., number of packets in the queue, or the packet delay)

The side information is often also shared via wireless links.

The wireless side information links are fundamentally different to the
main data link between base stations and users.

⇒ not all wireless links in the network have the same purpose.
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Side Information in the Wireless Cellular Downlink

The side information network is designed to optimize the main data
transmissions from base stations to users.
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What is Multiuser MIMO?

In modern wireless cellular networks, multiple antennas play an
important role.

Multiuser multiple-input multiple-output (MU-MIMO) plays a key
role.

Why?
1 Is a key component of recent standards (e.g., LTE, LTE-A).
2 Forms the basis for advanced interference mitigation techniques (e.g.,

CoMP, network MIMO).
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The MU-MIMO System Model
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The MU-MIMO System Model

The MU-MIMO system consists of three basic components:
1 a Nt antenna base station;
2 NU users, each with a single antenna;
3 a NU × Nt channel matrix H.
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The MU-MIMO System Model

The base station seeks to transmit a data vector u ∈ CNU

Each element of u is the data for a user.
The data vector u is assumed to be Gaussian (u ∼ CN (0, I)).

The base station can perform linear data processing.

The received vector is then

y = HPVu + n, (1)

where
1 V = [v1, . . . , vNU

] is the linear data processing at the base station;
2 P = diag(p1/‖v1‖2, . . . , pNt/‖vNt‖2) of transmit powers for each

antenna.
3 H = [h1, . . . ,hNU

]T is the channel matrix;
4 n is Gaussian noise (n ∼ CN (0, σ2I))
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The Role of Side Information in MU-MIMO

Without linear processing, there is inter-user interference.

Suppose V = I. This means that

yi = hi ,iui +
∑
j 6=i

hjuj + ni . (2)

To mitigate the interference, we can exploit side information.

Known as channel state information at the transmitter.

For instance, suppose the channel matrix H is known to the base
station.

Choose V = H−1, which means that

yi = ui + ni . (3)
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The Role of Side Information in MU-MIMO

There are two problems with using this approach:
1 There is a power constraint, which means that

Nt∑
i=1

pi ≤ Pmax. (4)

2 We need to obtain the channel matrix H at the transmitter.
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MU-MIMO with Limited Feedback

We can only obtain a quantized (compressed) version of H at the
base station.

This is known as MU-MIMO with limited feedback.

That is, we have the quantized channel matrix Ĥ.

The received signal is then

y = HPĤ−1u + n. (5)
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The Design Objective

The goal of the system is to maximize the average total data rate
sent to all users.

By Shannon’s theorem for the Gaussian channel, the total data rate
for a given H is given by

R =

NU∑
i=1

log

1 +
|h†i vi |2

pi
‖vi‖2

σ2 +
∑n

j=1,j 6=i |h
†
i vj |2

pj
‖vj‖2

 , (6)

where the power levels pi are chosen to satisfy

Nt∑
i=1

pi ≤ Pmax. (7)
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The Design Objective

Our problem is to design the quantization scheme to determine Ĥ so
that the expected rate E[R] is maximized.

This involves determining how to quantize each user’s channel vector
h†i .
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The Basic Approach

To quantize each user’s channel vector h†i , we consider two parts:

1 the channel gain, ‖h†i ‖;
2 and the channel shape

h̃†i =
h†i
‖h†i ‖

. (8)

Quantizing the channel gain is a scalar quantization problem.

This only requires 3 bits to obtain near optimal performance.

Quantizing the channel shape is a vector quantization problem.

This is our focus.
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Quantizing the Channel Shape

Suppose we have a codebook of vectors F = [f1, . . . , fN ], fi ∈ SNt−1.

I.e., codewords lie on the unit sphere in Nt dimensions.
This space can be identified as the complex projective space CPNt−1 or
Grassmannian manifold G(Nt , 1).

Now, suppose user i ’s channel shape is h̃†i .

We can quantize the channel shape via

k∗i = arg max
k∈1,2,...,N

|h̃†i fk |
2. (9)
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Design Problems

There are two key design problems:

1 How big should the codebook be (i.e., N)?

2 How do we construct the codebook?
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How Big Should the Codebook Be?

This question depends on two factors:
1 how the codebook is constructed;
2 and how the power levels are chosen.
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How Big Should the Codebook Be?

One approach is to make the following assumptions:
1 the channel shape h̃i is drawn from an isotropic distribution on the unit

sphere
2 the codebook is drawn from an isotropic distribution on the unit sphere;
3 and the power is equal for each antenna, which means that

pi =
Pmax

Nt
. (10)

This case was studied in [Jindal2006], where it was shown that
choosing

N = 2(Nt−1) log2 Pmax (11)

ensures that the rate loss (relative to perfect CSIT) is upper bounded
by Nt bits/s/Hz.
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The Case of Optimal Power Control

It is also possible to gain insight into the effect of quantization using
optimal power control, when the quantization error is specified.

That is, power is allocated by

R∗(vec(V̂)) = max
p1,...,pn

n∑
i=1

log

1 +
|h†i vi |2

pi
‖vi‖2

σ2 +
∑n

j=1,j 6=i |h
†
i vj |2

pj
‖vj‖2


subject to

n∑
i=1

pi ≤ pmax

pi ≥ 0, i = 1, . . . , n,

We can use techniques from optimization problems with
perturbations.

Note that the perturbations are in CNtNu .
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The Case of Optimal Power Control

Observe that we can write the Taylor series expansion

R∗(vec(Ŵ)) = R∗(vec(W)) + Dd̃R
∗(vec(W))‖d‖

+ o(‖d‖2), (12)

where the directional derivative is given by

DeR
∗(vec(W)) = lim

t→0

R∗(vec(W) + td̃)− R∗(vec(W)

t
. (13)

This can be used to give a rate loss bound

|R∗(vec(Ŵ))− R∗(vec(W))| ≤ |Dd̃R
∗(vec(W))|‖d‖

+ |o(‖d‖2)|, (14)

Malcolm Egan (CTU) July 14, 2015 24 / 41



The Case of Optimal Power Control

The key difficulty is to obtain the directional derivative
Dd̃R

∗(vec(W)).

To obtain this we have proved a Danskin-type theorem.

A key feature of our theorem is that it is in terms of Wirtinger
derivatives:

∂

∂zi
f (z0) =

1

2

(
∂

∂xi
f (z0)− i

∂

∂yi
f (z0)

)
∂

∂z∗i
f (z0) =

1

2

(
∂

∂xi
f (z0) + i

∂

∂yi
f (z0)

)
,

with

∂f

∂z
=

[
∂f

∂z1
, . . . ,

∂f

∂zn

]
,

∂f

∂z∗
=

[
∂f

∂z∗1
, . . . ,

∂f

∂z∗n

]
. (15)
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The Case of Optimal Power Control

Theorem

Let m, n, k ∈ N, f : Rm × Cnk → R ((x,h) 7→ f ) be a continuous function
in Rm × Cnk and B be a compact subset of Rm. Denote S(h0) as the set
of x ∈ B that minimizes f (x,h0) with h0 fixed. Suppose that Dhf (x,h)
exists and is continuous in Rm × Cnk . Then, the optimal value function

v(h) = inf
x∈B

f (x,h) (16)

is directionally differentiable in the direction d̃ ∈ Cnk , ‖d̃‖ = 1, and

Dd̃v(h0) = min
x∈S(h0)

∂f

∂h
(x,h0)d̃ +

∂f

∂h∗
(x,h0)d̃∗. (17)
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The Case of Optimal Power Control

Observe that in the case of perfect CSI, the power control problem
reduces to

R∗(vec(W)) = max
p1,...,pn

n∑
i=1

log

(
1 +

pi
σ2‖wi‖2

)

)

subject to
n∑

i=1

pi ≤ pmax

pi ≥ 0, i = 1, . . . , n.

(18)

This problem is convex ⇒ we only need to compute the directional
derivative at the optimal solution

pi ,opt =
(
µ− σ2‖wi‖2

)+
, (19)

so that
∑n

i=1

(
µ− σ2‖wi‖2

)+ ≤ pmax and µ ≥ 0 is satisfied.
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The Case of Optimal Power Control

From these results, we can compute the rate loss bound

|R∗(vec(Ŵ))− R∗(vec(W))| ≤ |Dd̃R
∗(vec(W))|‖d‖

+ |o(‖d‖2)|, (20)

A key observation is that for a sufficiently small perturbation ‖d‖, the
rate loss scales with ‖d‖.
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How Do We Construct the Codebook?

So far, we have addressed the first key design problem:

How big should the codebook be?

We now turn to the second key design problem.

How do we construct the quantization codebook F = [f1, . . . , fN ]?
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Codebook Design Criteria

The goal of codebook design (i.e., F) is to maximize the average
data rate.

This is difficult, so we resort to optimizing bounds.

An important design criterion is the Grassmannian criterion:

max
F

min
i 6=j

1− |f†i fj |
2.

This maximizes the distance between codewords in the codebook F .

An alternative approach is to minimize the expected square
correlation:

min
F

N∑
i=1

N∑
j=1

|f†i fj |
2µ(fi )µ(fj),

where µ(·) is the Haar measure on U(Nt).
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How Do We Optimize the Design Criteria?

To optimize the design criteria, we need to optimize over codebooks
(i.e., sets of vectors in CPNt−1.

In fact, there is more structure: codebooks are frames.

Definition

A sequence Φ = (φi )i=1,...,N ∈ CNt is a frame for CNt , if there exists
constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
N∑
i=1

|〈x, φi 〉|2 ≤ B‖x‖2,

for all x ∈ CNt . A frame is tight if A = B and unit norm if ‖φi‖ = 1 for all
i .
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Optimizing the Grassmannian Criterion

A key result in frame theory is that the Grassmannian criterion

max
F

min
i 6=j

1− |f†i fj |
2.

is optimized by the equiangular tight frames, where

|f†i fj |
2 =

N − Nt

Nt(N − 1)
, i 6= j .

However, ETFs only exist for N ≤ N2
t ⇒ not suitable for codebooks

with large N.

For N > N2
t , we need an alternative approach.
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Optimizing the ESC

Constructing codebooks that optimize the Grassmannian criterion is
difficult.

An alternative approach is to minimize the ESC

ESC =
N∑
i=1

N∑
j=1

|f†i fj |
2µ(fi )µ(fj),

which has more (easier to find) solutions.
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ESC Optimal Frames

Theorem

A locally optimal solution to the ESC minimization is the frame Φ
satisfying:

1 the probability of selecting the i-th codeword is given by µ(fi ) = 1
N ;

i.e., all codewords are equally likely;

2 the frame Φ is tight.
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ESC Optimal Frames

A corollary is that for a locally optimal codebook

ESC =
1

Nt
.

This condition is achieved when the conditions in the theorem holds.
That is,

1

µ(fi ) =
1

N
;

2 the codebook F = [f1, . . . , fN ] is tight; i.e.,

FF† =
N

Nt
I.

It is also easy to check numerically.
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How Do We Construct ESC Optimal Frames

An important class of frames optimizes the ESC.

Theorem

If U1, . . . ,UN is an algebraic group of unitary matrices (with matrix
multiplication as the operation), φ ∈ CNt , ‖φ‖ = 1, and the frame Φ with
elements

[U1φ, . . . ,UNφ]

is a tight frame. Then, Φ minimizes the ESC.
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An Explicit Construction

Consider the group SL2(F3).

This has a unitary representation with generator matrices

A =
e10πi/8√

2

(
1 1
i −1

)
,

P =

(
i 0
0 −i

)
,

Q =

(
0 1
−1 0

)
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An Explicit Construction

Construct the group as

AsP iQp, s = 0, 1, 2, i = 0, 1, 2, 3, p = 0, 1.

The choice of

φ =
1√
2

[1, 1]T

yields a tight frame.

We can then obtain a codebook as

F =
1√
2

[
[1,−1]T , [−1,−1]T , [0, 1− i ]T , [1 + i , 0]T , [−1, i ]T , [−i , 1]T

]
This codebook minimizes the ESC.
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A Performance Comparison: Nt = NU = 2, 6 codewords
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A Performance Comparison: Nt = NU = 2, 60 codewords
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Conclusions

We have considered the problem of designing how to provide side
information in MU-MIMO.

The basic problem is to construct vector quantization codebooks.

There are two subproblems:

How big should the codebook be?
How to construct the codebook?

We proposed a codebook construction technique based on group
representation theory.

Our construction can perform close to optimal.
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