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L introduction

Introduction

m Neural networks are known as powerful learning machine for
supervised learning
m spatial information: convolutional neural network
m temporal information: recurrent neural network
m Tensor factorization is successfully applied for various data
structures with
m multiple ways such as trials, conditions, subjects, channels,
spaces, times and frequencies could be represented
simultaneously
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L introduction

Motivation

m Multi-way data are unfolded as one-way vectors for NN-based
model.
m neighboring, temporal and spatial information are missing
m spend extra parameters and training samples

unfolding
—)

i
i
i
i
i
i

m Tensor analysis aims to keep the multi-way structure in inputs
and features

m How to combine neural network and tensor factorization?
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Related Work
m Tensor factorization
m Neural network



Part |: Tensor Factorized Neural Network
LRelated Work

L Tensor factorization

Tucker Decomposition for Three-way Tensor

u®
M3 X N3
= u® -
M2 X N2
N1 X N2 X N3

MIXM2><M3 Mlle

X = S X1 U(l) X9 U(2) X3 U(3)
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L Tensor factorization

Tucker Decomposition

m P-way input tensor X € RM1*xMr is decomposed into core
tensor G and matrices u®

=G x; UD x,U® x5... xp UD)

N1 Na Np

E : E : E : (1,2 ulP)
xmlmg--- - 9”1”2"'”Pum1n1um2n2 mpnp

ni=1ng=1 np=1

m Two methods to compute the Tucker decomposition
(Lathauwer et al., 2000)
m higher-order singular value decomposition
m higher-order orthogonal iteration
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Neural Network

Inputs Outputs =

eXP(Zj We; %)

y =
© Y exp(X; wryzg)

Hidden units
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Tensor Factorized Neural Network
m Tensor factorized error backpropagation
m Comparison between NN and TFNN
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L Tensor Factorized Neural Network

Tensor Factorized Neural Network

m A generalization of conventional neural network (NN)
classifier in presence of multi-way data

m Tensor factorized neural network (TFNN) keeps the original
multi-way data structure and extracts the features with
multiple modes

m Construct meaningful feature representation and classification
system

m Key difference between NN classifier and TFNN is the style
they handle the high dimensional data in multiple ways
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L Tensor Factorized Neural Network

Tensor Factorization & Transformation

m Tucker decomposition:

:X::.A,XlU(l) ><2U(2) ><3...><PU(P)
A:DCxl [J(l)Jr XQU(Z)T Xg - XPU(P)T

m Tensor transformation:

A:xxlU(l) XQU(2) X3"‘><PU(P)
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LTensor factorized error backpropagation

Tensor Feedforward Computation

Given a P-way tensor X € RMixMax-xMp 5q inpyt

Tensor transformation layer:

AN =X %, UW xo U@ x5 xp UWP)
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LTensor factorized error backpropagation

Tensor Feedforward Computation

Given a P-way tensor X € RMixMax-xMp 5q inpyt

Nonlinear activation layer:

22 = p(atth
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LTensor factorized error backpropagation

Tensor Feedforward Computation

Given a P-way tensor X € RMixMax-xMp 5q inpyt

Softmax layer:
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LTensor factorized error backpropagation

TFNN in Different Ways

h! I H It
I — | —r— i
Wt : o) u® : | um ue ue |
| |
___—__ __—_—— J — o
C—x 1] X N

(a) one-way (b) two-way (c) three-way
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LTensor factorized error backpropagation

Tensor Factorized Error Backpropagation

m Estimate the model parameters © = {UM) ... UWP) W} by
minimizing the cross-entropy error function

E©) =) E(0)=-Y" rcny(X,0)

t c

m By using the stochastic gradient descent algorithm, we update
the parameters iteratively

DE(©)

(T+1) — @) _
® (©) n 76




Part I: Tensor Factorized Neural Network
L Tensor Factorized Neural Network

LTensor factorized error backpropagation

Differentiation of Softmax Layer

m Softmax Iayer:

OBy Oy Y N()
Z 8ytk Bal ) = Ytc — Tte = dc

OE; _ OE; dal
awnan---npc aag) 8Wn1n2_._npc
Vw.. . B =d¥V x z(=Y
m Backpropagation of local gradients:

O, 0B,  8a
P D D e D DL AL

=dPz{-h

DIV =W x () dV
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LTensor factorized error backpropagation

Differentiation of Nonlinear Activation Layer

m Nonlinear activation layer:

-1
OFE; _ O0Ey 3Z%In2)---np _ D h’(A(l*Z) )
_ - _ _ - ning--n ning:-n

0ALD L ezl L aAl D L g R

.D(lf2) _ @(l*l) « h/(.A(lfQ))
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LTensor factorized error backpropagation

Differentiation of Tensor Transformation Layer

m Tensor transformation layer :

o, oAV Y.,
I P IRDIPIEDD ) ONE

(1=2)
8l—]'I‘LpTTLp Np—1 Np+1 aAnlng ‘np aUTmep

= <®(l_721,27> T::n-mp”-:)

T::“_m e = z(l752 LoXq U(l) . Xp*l U(p_l) Xp+1 U(p+1) e Xp U(P)

m Backpropagation of local gradients:

D=3 — =2 5, YOT 5, ... %, UPIT
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L Comparison between NN and TFNN

Number of Parameters in NN

softmax
-W- Affmetransform
+Non||near
K x1

N1N2N3 x 1

M1M2M3 x 1
N1N2N3 X M1M2M3
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L Tensor Factorized Neural Network
LComparison between NN and TFNN

Number of Parameters in TFNN

U(]-) Tensor transformation softmax
=
+ Nonlinear
Ny x Ny x N3y K x1
My x My x M; L 2 3
Model Neural network Tensor factorized neural network
Parameter size | [[ (MpNp) + K[, Np >, (MpNp) + K[, Np

m TFNN needs very few parameters
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LE><periments

Two-Way TFNN Task

m MNIST dataset:
m 0-9 digits
m grayscale images with size 28 x 28
m 60,000 training images and 10,000 test images

FOEEQEERNHL

Preprocessing: normalization into values between 0 and 1

m mini-batch: 50

1/6 training data for held-out validation

learning rate: 0.001 and 0.005 for UM, U@ and W
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LE><periments

Three-Way TENN Task

m SVHN dataset:

m 0-9 digits, but not crop well
m colour images with size 32 x 32
m 73,256 training images and 26,032 test images

TN I < ) )

m CIFAR-10 dataset:

m contain 10 classes such as airplane, bird, cat, etc.
m colour images with size 32 x 32
m 50,000 training images and 10,000 test images

sErENFfEE sl
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Distribution of Weights
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Experimental Result of MNIST

Method Topology Parameter Size | Accuracy
NN 784-70-10 55,580 95.6%
NN 784-196-10 155,624 97.3%
NN 784-1000-10 794,000 97.7%

TFNN | 28x28-14x14-10 2,744 96.2%
TFNN | 28x28-40x40-10 27,800 96.8%
TFNN | 28x28-70x70-10 52,920 97.7%
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Experimental Result of SVHN

Method Topology Parameter Size | Accuracy
NN 3072-400-10 1,232,800 55%
NN 3072-1000-10 3,082,000 63%

TENN | 32x32x3-20x20x3-10 13,289 72%
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Experimental Result of CIFAR-10

Method Topology Parameter Size | Accuracy
NN 3072-1000-10 3,082,000 33%

TENN | 32x32x3-30x30x2-10 19,926 43%

TENN | 32x32x3-30x30x6-10 55,938 46%
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Part |I: Domain Adaptive Neural Network
L introduction

Outline

Introduction



Part |I: Domain Adaptive Neural Network
L introduction

Introduction

m Traditional machine learning works well under an assumption
that training and test data follow the same distribution

e real-world data may not follow this assumption

m Feature-based domain adaptation is a common approach

e allow knowledge to be transferred across domains through
learning a good feature representation
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Motivation

m Most of previous studies are restricted to train features and
classifier separately under a shallow model structure

m We co-train the feature representation and classifier under
neural network without labeling in target domain

m Objective function is based on multi-task learning and
distribution matching



Part |I: Domain Adaptive Neural Network

L introduction

Systematic Diagram

Training Stage

}

Source
Domain

Auxi

Distribut

Transfer Knowledge

Target
Domain

I

Test Stage

Training Data

DNN/CNN

Main Task

DNN/CNN

Auxiliary Task

Main Task
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Transfer Learning
m Multi-task learning
m Domain adaptation
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Transfer Learning

m Let D = {X, p(X)} denote a domain

e feature space X
e marginal probability distribution p(X)
o X ={xq, -, xp} C X

m Let 7 ={),f(-)} denote a task

o label space Y
e objective predictive function f(-)
can be written as p(Y|X)

m Assumptions in transfer learning

e source and target domains are different Ds # D
e source and target tasks are different 75 # 71
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L Multi-task learning

Multi-task Learning

moin UDpm, 0) + AQ(0)

[ MainTask | [ Auxiliary Task |

Target  {apple, not apple} {pear, not pear}

Joint
Learning

Input
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Feature-based Domain Adaptation

m Assume that a domain-invariant feature space exists

m Minimize Div(p(p(X®)), p(¢(X*))) to find transformation ¢

Dr Dg

oL Yo
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Multi-task Neural Network Learning

min (D, 0) + AQ(0)

Main task Auxiliary tasks

Output

Shared feature
representation
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Domain Adaptive Neural Network
m Learning strategy and task
m Objective function
m Learning procedure
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LLeaming strategy and task

Learning Strategy and Task

Training Test
Main Task Auxiliary Task Main Task

@® @@ @ (O Oluwm
{w} I TN {) 1

o o (@ ® (O Q]

{wji}t afy 2l ﬁ Eerthﬁzzr
© O
o @ 1

Labeled Data

Unlabeled Data
in Source Domain

in Target Domain

Unlabeled Data
in Target Domain
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Objective Function

m Semi-supervised model adaptation aims to estimate the neural
network parameters w by minimizing

E(w) = Ec(w) + A\ Ef(w) + A\gEg(w)
where A\, and Ay are the empirical regularization parameters
E.(w) is classification error for main task

°
e E,(w) is reconstruction error for auxiliary task
e E,(w) is error for matching distribution in hidden layer



Part |I: Domain Adaptive Neural Network
L Domain Adaptive Neural Network
LObjective function

Multi-task Learning

m Classification task

e cross entropy error function

e training samples and their labels from source domain
m

Ec(w)=— Z Z tav l0g yay

a=1

m Regression task

e squared reconstruction error
e both datasets in source and target domains
m+n

1 ~
Er(w) = m+n Z [xa — Xa||2
a=1
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LObjective function

Distribution Matching

m Maximum mean discrepancy (MMD) is defined with
f(x) = (p(x),f) and ¢(x): X — H

MMD(X", X) = qus(x - 72¢

1 m ) m,n 1 n
= |2 Z k(x3,xp) — o Z k(xj,x};)—i—ﬁ Z k(x3, xp
a,b=1 a,b=1 a,b=1

m Gaussian kernel k(-,-) is used
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L Learning procedure

Learning Procedure

Main Task: Auxiliary Task:
Classification Regression

Q-+ Q) [Q:+- O]
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L Learning procedure

Learning Procedure

Main Task: Auxiliary Task:
Classification Regression

Output ) e o e (v 7) o o o (p
Layer

E.(w) E.(w)

90.N0S Ul UOITRIIHISSe|d 10} uonebedoidyoeq 10113

surewop yyoq ui uoissaibal oy uonebedoidsoeq oui3

QNN Aq Jake] uappiy ul suonnquisip ay) Buiyateiy

\ /
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LLeaming procedure

Derivation of Differentiations

m Differentiation for second term Egy(w) is shown below

8Ed2 o aEdg 8ZJ 8aj
Bwy = 2= 2= 0z, Doy Owy
J! ab=1 | J J !

where z; comes from both domain data z;; and zgj and

OEp 2
bz, ~ o2 &Pz - zj|I?/20%)(25; — z3)

= g(z3, ZZ)(Zasj - Zéj)
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L Learning procedure

Derivation of Differentiations

m We can find differentiations for three terms as

m,n t t
aEd2 . Z Z (Zs zt) Zs_azas_i aazj _ Zt.azbj aabj
o : 8\Z5,2p aj 83;1- 8WJ, bj aazj aWJ,

aEdl _ & s s s azsj 833]
aVVJ, - 2zzg(za7za) (Zajaagj aVVJ,

a=1l j

OEq3 ¢ t ot t aZ;j 832]
Owe 2 Z Z 8(22,2.) | 2y 0at . Ow:
s a=1 j aj ~ !

OEqp

m 5.2 involves both domain data 9Eq OEq4s
/ji

" Dw; and o only involve
source domain data and target domain data, respectively




Part |I: Domain Adaptive Neural Network
LE><periments

Outline

Experiments



Part |I: Domain Adaptive Neural Network
LE><periments

Experimental Data

m MNIST dataset:
e MNIST uses a subset of original MNIST dataset
e 6000 images per class (0 and 1)
e size of images is 28x28

m LPN dataset:
o license plate numbers with different angles and illuminations
captured from different surveillance cameras
e 4000 images per class (0 and 1)
e size of images is 28x28

COO0DO N (\ /[ |
BEDOEO\THERE ~
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Experimental Setup

m Subtract mean over the dataset and normalize over the
dataset to a stand normal distribution in each pixel
Four-layer classification network (784-500-300-2)
Three-layer auto-encoder regression network (784-500-784)
e activation function: sigmoid function
e output function: softmax function
m Stochastic gradient descent (SGD) with momentum
o )\, =1, A\g = 1.2 (MNISTLPN), Ay = 2.2 (LPN—MNIST)
e batchsize: 2000 and 200
e epoch: 350
e momentum: 0.5
e learning rate: 1 (learning rate is multiplied by a factor of 0.7
each 10 epochs after 300th epoch)
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Experimental Result

m Classification error rates (%)

MNIST—LPN | LPN—MNIST
NN 27.3 15.0
NN+SSL (distribution matching) 18.8 135
NN+SSL (multi-task learning) 25.3 5.4
NN SSL (both) 162 3.3
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Experimental Data

m Amazon dataset

e Amazon product reviews on four domains or product types
(kitchen appliances, DVDs, books, electronics)

e 1000 positive and 1000 negative reviews on each product type
m Pre-processing

e ignore the words appearing less than 10 occurrences
(dictionary size 40K words)

o use tf-idf reweighting method to extract feature vectors

e transform feature vector into low-dimensional vector with 2300
dimensions by PCA
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Experimental Setup

m Four-layer classification network (2300-300-50-2)
m Three-layer auto-encoder regression network (2300-300-2300)

activation function: sigmoid function
output function: softmax function

m Stochastic gradient descent with momentum

Ar=1and \y =0.8

batchsize: 1000 and 1000

epoch: 500

momentum: 0.5

learning rate: 1 (learning rate is multiplied by a factor of 0.5
each 30 epochs after 300th epoch)
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Experimental Result

m Classification error rates (%) for adaptation among different
domains (K: Kitchen appliances, D: DVDs, B: Books, E:
Electronics)

K—D | D—»B | B—>E | E=»K
NN 31.8 23.3 24.3 | 36.5
CODA 26.0 21.4 186 | 27.2
NN+SSL | 22.7 | 20.6 | 13.9 | 27.4
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Introduction
m Topic model
m Neural network
m Motivation

Bayesian Unfolding Inference
m Bayesian unfolding
m Unfolding for unsupervised topic model
m Unfolding for supervised topic model

Conclusions and Future Works
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Topic Models

m Topic models are tools for discovering the abstract topics that
occur in collection of documents. For example,

a document consists in

m 90% of tokens € { medicine, doctor, patients, ... }
m 10% of tokens € { baseball, runner, bat, ball, ... }
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LTopic model

Input:

Statistical approaches help in the determination of significant configurations in protein and
nucleic acid sequence data. Three recent statistical methods are discussed: (i) score-
based sequence analysis that provides a means for characterizing anomalies in local
sequence text and for evaluating sequence comparisons; (ii) quantile distributions of amino
acid usage that reveal general compositional biases in proteins and evolutionary relations;
and (iii) r-scan statistics that can be applied to the analysis of spacing of sequence markers.
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nucleic acid sequence @ata Three recent stafistical methods discussed score
pased sequence analysis provides  means anomalies ' local
sequence text gvalliating sequence Gomparisons; distributions  amino
acid usage reveal general compositional Biases i proteins evolutionary Felations
statistics applied analysis o' spacing markers
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L introduction
LTopic model

Input:
Statistical approaches help determination ' Significant configurations 1 protein

nucleic acid sequence @ata Three recent stafistical methods discussed score
pased sequence analysis provides  means anomalies ' local
evalliating sequence Comparisons; distributions  amino

sequence text
reveal general compositional Biases i proteins evolutionary Felations

acid usage
applied analysis o' spacing markers
Output:
sequence residues computer
region binding methods
pcr domains number 0.2
identified helix two
fragments cys principle
two regions design
genes structure access o1
three terminus  processing
cdna terminal advantage
analysis site important I ‘

Topic words Topic proportions
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L Neural network

Neural Network Learning

Deep structured/hierarchical learning
Rapidly developed and widely applied for many applications
Multiple layers of nonlinear processing units

High-level abstraction

Run
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Motivation

Topic Model + Neural Network
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Bayesian Unfolding Inference

m Bayesian unfolding
m Unfolding for unsupervised topic model
m Unfolding for supervised topic model
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Generative Models vs. Neural Nets

Generative Models Neural Nets
Structure Top-down Bottom-up
Representation Intuitive Distributed

Interpretation Easy Harder
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Generative Models vs. Neural Nets

Generative Models Neural Nets
Semi/unsupervised Easier Harder
Incorp. domain knowl. Easy Hard
Incorp. constraint Easy Hard

Incorp. uncertainty Easy Hard
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Generative Models vs. Neural Nets

Generative Models Neural Nets
Learning Many algorithms Back-propagation
Inference/decode Harder Easier

Evaluation on int. quantity End performance
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Goal of Bayesian Unfolding Framework

Generative Models Neural Nets
Structure Top-down
Representation Intuitive
Interpretation Easy
Semi/unsupervised Easier
Incorp. domain knowl. Easy
Incorp. constraint Easy
Incorp. uncertainty Easy
Learning Many algorithms Back-propagation
Inference/decode Easier

Evaluation on End performance
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Bayesian Unfolding Framework

Model-based method

max Je({yn})
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Bayesian Unfolding Framework

Model-based method

max T ({yn})
where

I'Il\IE’lX F@({xn}a ‘Ilbest)

estimate y,, given Wt
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Bayesian Unfolding Framework

Model-based method

max Je({yn})

repeat

¥, = update(z,, ¥,, O)
until convergence
Yn, = estimate(x,,, ¥, ©)

©® = update(z,, ¥, O)
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Bayesian Unfolding Framework

Model-based method Bayesian unfolding framework

mgs o {ue}) (Emem)-o T
(unfold)
(o)
|
|
| L
|
(ot )
(update @, ) :

repeat

¥, = update(z,, ¥,, O)
until convergence
Yn, = estimate(x,,, ¥, ©)

©® = update(z,, ¥, O)
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Bayesian Unfolding Framework

Model-based method Bayesian unfolding framework

mgs: o) (im0 1
(o)
|

|
| (untie)
|
Gt )
(update @, ) :

repeat

¥, = update(z,, ¥,, O)
until convergence
Yn, = estimate(x,,, ¥, ©)

©® = update(z,, ¥, O)
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L Bayesian unfolding

Network Training: Feed-forward

Model-based method Bayesian unfolding network

max Je({yn})

repeat

¥, = update(z,, ¥,, O)
until convergence
Yn, = estimate(x,,, ¥, ©)

©® = update(z,, ¥, O)
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Network Training: Back-propagation

Back-propagation Bayesian unfolding network

V@j {yn}

w5 o (stimaie ) 01
Z 0, 0OXL)

d®<L>

Cupdate ¥, 0
Cupdate 0, 00
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Network Training: Back-propagation

Back-propagation

0T OYn

d®<L> Z 7 0OL)
0T 8J O

0w 0 gwD

Bayesian unfolding network

V@j {yn}

(Gmaie 1)~ 01"
oL
e 7)o

Cupdate ¥, 0
Cupdate 0, 00
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L Bayesian Unfolding Inference

L Bayesian unfolding

Network Training: Back-propagation

Back-propagation

0T OYn
d®<L> Z 7, 0OL)
oJ 8J OYn
0w 0 gwD
g g vty
o000 Z awﬁf*” 500

Bayesian unfolding network

V@j {yn}

(Gmaie 1)~ 01"
oL
e Ty o

Cupdate ¥, 0
Cupdate 0, 00
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Network Training: Back-propagation

Back-propagation Bayesian unfolding network
V@j {yn}

w5 o (siimaie ) 01
a@<L> Zagna@m g
= 0u, ‘II;L—Q) ]

vl OYn ool

g g vty
o000 Z awﬁf*” 500

o7 o7 owlt) (update ¥, ) ©)
0wl 9w Hwd
(update ¥, ) O
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L Bayesian unfolding

Network Training: Back-propagation

Back-propagation

0T Oyn

a@<L> Zayn 90D

0F 0T O
owH)  9Gn owH)

g g vty
900 — Z a‘IfsfH) 0O )
ag  8g owitY
orl etV awd

fori=L-1,...,1

Bayesian unfolding network

V@j {yn}

(Gmaie 1)~ 01"
oL

e Ty o
‘IlglL—Q) |

v
Copde )
178

Copdite 0,
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LBayesian unfolding

Bayesian Unfolding Inference for Topic Models

m Topic model — Bayesian unfolding inference
m Model parameters are inferred by maximizing the
end performance of network

m Unsupervised topic model — maximize empirical likelihood
m Supervised topic model — maximize cross-entropy
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LUnfolding for unsupervised topic model

Bayesian Unfolding Inference for
Unsupervised Topic Model
- Latent Dirichlet Allocation (LDA)



Part Ill: Bayesian Unfolding Network

L Bayesian Unfolding Inference

LUnfolding for unsupervised topic model

Latent Dirichlet Allocation

@

Ny

D

m True posterior distribution

p(z,G ‘ W, &, [3) =

®

p(W7 z, 0 ’ X, B)

p(w |« B)
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Variational Bayesian Learning for LDA

m Evidence lower bound (ELBO)

L(¢,v; e, B)

— E,[Inp(w,2, 0]a, B)] + Hlz, 0]

= Eq[In p(wlz, B)] + Eq[Inp(2]0)] — Eq[In ¢(z|¢)]
word probability constructed by topic model

+ Ey[lnp(0]a)] — Ey[Ing(6]y)]

Dirichlet prior

m Variational posterior distribution

(2,0 | ¢,v) = [144(0a | Ya) [T, 4(2an | Han)
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Variational Bayesian Learning for LDA

1: Initialize &, 3

2: repeat

3 for all document d do

4 Gavk = 1/K

5: repeat

6 Yak = o + >, NavPdvk

7 Gavk o< exp {In Bry + Y (var)}
8 until g and ¢g4,, converged

9 end for

100 Bro o< Do g Navbavk

11: & «+ Newton-Raphson(«, g(«), H(x))
12: until ELBO converged
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Bayesian Unfolding Inference for LDA

i = o + 3 Nawdi”
@40 o exp (In ﬂffﬁ +v(5)

elElle  www

: © = {a.p}
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Bayesian Unfolding Inference for LDA

— o .
Lok 8 ..=<F— von = al) + Z Navgy,
=~ Y(2) E/ -

o4, ocoxp (A2 + wr)

e Lof o) oo 80
(@l e o = {ye, (b))
----- 2N A O ={xp}
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Bayesian Unfolding Inference for LDA

p(way)
°
() ploe O
..... & S
Tole
4,"' P I '
“Ya /
Mo R
..... . % )
4»"' e a8
“Ya /
Mo R
| | =
{ 0

p(wav) = Z BorEq[0ak]

k

E, [edk] = Z’m,kyd.
5 Vdj

l l -1
8 =afl + 3 Nl

& o exp (A + 0005

Yo ={vq {ba}}
O = {« B}
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Bayesian Unfolding Inference for LDA
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] | =
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p(wav) = Z BorEq[0ak]

k

E, [edk] = Z’m,kyd.
5 Vdj

l l -1
8 =afl + 3 Nl

& o exp (A + 0005

Yo ={vq {ba}}
O = {« B}
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Bayesian Unfolding Inference for LDA

Ve Z Ny Inp(way)
dv o

p(wav) = Z BorEq[0ak]

k

E, [edk] = Z’m,kyd.
5 Vdj

l l -1
8 =afl + 3 Nl

& o exp (A + 0005

Yo ={vq {ba}}
O = {« B}
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Constraint Optimization for Topic Models

m Exponentiated gradient method (EG)
(probability simplex constraint)

max 7@y _ Lk @)
o1 p

s.t. @§T+1) >0 and Z@gTH) =1

)

(t+1)
@Z(-H_l) o @Et) exp (—paj(® )>
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Experimental Data

m 20 newsgroups data set

rare, common an stop words are removed

random select 15,000 documents for document modelling
keep 5,000 frequent words

9,000 documents for training

6,000 documents for testing

m BUI for LDA

Ea=1

B K =140

m model parameters are tied for all layers
m minibatch = 3,000
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Evaluation for Perplexity
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Bayesian Unfolding Inference for
Supervised Topic Model
- Supervised Latent Dirichlet Allocation
(sLDA)
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Supervised Topic Models for Multi-class Classification

m sLDA

q
® @
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Supervised Topic Models for Multi-class Classification

m sLDA

OO B ®
B ®

D
_ 1 exp(1,,,Za)
Zq = Zq N I S
Na Z " Zm eXp(n;lr—LZd)
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Variational Bayesian Learning for sLDA

m Evidence lower bound (ELBO)

L(¢,v;, B,M)
= Ey[Inp(w,y,2,0|, B,1)] + H|z, 0]

= Eq[Inp(wlz, B)] + Eq[Inp(2]0)] — Eq[In ¢(z|@)]
word probability constructed by topic model
+ Eq[lnp(8]eq)] — Eg[Ing(8]y)] + Eq[Inp(y|z,m)]

Dirichlet prior supervision

m Variational posterior distribution

Q(Z7 9‘¢7Y) = Hd Q(edh’d> Hn Q(Zdn‘d)dn)
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Variational Bayesian Learning for sLDA

1: Initialize &, 3

2: repeat

3 for all document d do

4: Gank = 1/ K

5 repeat

6 Yak = k. + D, Pdnk

7 Gank o xp {10 B, + V() + %= — (0 )~ |

where hy =3 T1, 2, (32, @anj exp(ne;/Na)) exp(ner /Na)
8: until 45 and ¢g,x converged
9: end for
10: ﬁkv X Zdn ¢dnk:wdnv
11: & < Newton-Raphson(a, g(«x), H(x))

12: 1 < update(n, ¢)
13: until ELBO converged
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Bayesian Unfolding Inference for sLDA

o
Plyam) = —=2mPt)_

5, exp(n,, )
':,‘$d @ (Edk = Nid zv: Ndv¢dvk

. (2)%_ @ ; . -1
GHEEDT® | ol Tra

“Yd 1\ v

2 I

..... Gy o exp (ALY + v (D))

."'-‘“1\‘\/ /d:‘i ¢d” ."‘:N ﬁ(l)
ﬁj&’ Flm U, = {v, {pa}}
----- ‘§\ IO — dy

O={n«p}
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Bayesian Unfolding Inference for sLDA

(o )
Ve E dy Y
: m 7 Label: p(llm )

P(Yam) =

" >, exp(n;), ¢a)
' @a @ (Edk = NL Z Ndv¢duk
X 4 <

. (2)%_ @ ; . -1
Ot OT® g
“Yd (\ v

2 I

..... Gy o exp (ALY + v (D))

."'-‘“1\‘\/ /d:‘i ¢d” ."‘:N ﬁ(l)
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Document Classification

Classification accuracy (%)

40
Learning epoch

Classification accuracy (%)

Number of unfolded layers
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Comparison of BUl and VB

m Variational Bayesian (VB) Inference
m VB E-step iteration

m Bayesian Unfolding Inference (BUI)
m Propagation layer-by-layer
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Comparison of BUl and VB

m Variational Bayesian (VB) Inference

m VB E-step iteration
m VB M-step

m Bayesian Unfolding Inference (BUI)
m Propagation layer-by-layer
m Back-propagation
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Comparison of BUl and VB

m Variational Bayesian (VB) Inference

m VB E-step iteration
m VB M-step
m Inference with one model parameters

m Bayesian Unfolding Inference (BUI)
m Propagation layer-by-layer
m Back-propagation
m Inference with a cascade of untied models
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Comparison of BUl and VB

m Variational Bayesian (VB) Inference

m VB E-step iteration

m VB M-step

m Inference with one model parameters

m Model inference criteria based on evidence lower bound

m Bayesian Unfolding Inference (BUI)
m Propagation layer-by-layer
Back-propagation
Inference with a cascade of untied models
Model inference criteria based on end performance criteria
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Outline

Conclusions and Future Works
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Conclusions

m We have presented a novel tensor factorized neural network
which is a generalization of multilayer perceptron

m Tensor factorized error backpropagation for optimization of
parameters

m We have presented a domain adaptive neural network that
transfers knowledge though jointly training a classifier and a
domain-invariant feature extractor

m We turned the VB inference procedure of topic model into a
Bayesian unfolding network

m This enables us to exploit an error back-propagation algorithm
to meet the end performance
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Future Works

m Convolutional or recurrent tensor factorized neural network

m use convolution or recurrent operation to get extra temporal or
spatial information

Bayesian tensor factorized neural network & Bayesian domain
adaptive neural network - model regularization

Extend current domain adaptation to active transfer learning

Variational auto-encoder for stochastic error back-propagation
- manifold learning, transfer learning, etc

Applications to different types of information system

Thank you for listening!
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