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Topological Data Analysis

• TDA: a new method for extracting topological or geometrical 
information of data. 

Key technology = Persistence homology
（Edelsbrunner et al 2002; Carlsson 2005)

Background

• Complex data:

Data with complex structure must be analyzed. 

• Progress of computational topology:

Computing topological invariants becomes easy. 
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TDA: Various applications

33

Brain artery trees
e.g. age effect
(Bendich et al 2014)

Brain Science

Structure change 
of proteins
eg. open / closed
(Kovacev-Nikolic et al 2015)

Material Science

Computer Vision

Shape signature, 
natural image statistics
(Freedman & Chen 2009)

Data of highly complex geometric structure

Often difficult to define good feature vectors / descriptors 

etc…
Non-crystal materials
(Nakamura, Hiraoka, Hirata, Escolar, Nishiura. 
Nanotechnology 26 (2015))

Liquid Glass

Persistence homology provides a compact representation for such data.

Biochemistry



Outline

• A brief introduction to persistence homology

• Statistical approach with kernels to topological data analysis 

• Applications
• Material science

• Protein classification

• Summary
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Topology
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Topology:  two sets are equivalent if one is deformed to the other 
without tearing or attaching. 

Topological invariants:  any equivalent sets take the same value.
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Algebraic Topology

• Algebraic treatment of topological spaces
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≅
Algebraic 
operations

Compute various topological 
invariances 

e.g. Euler number

Simplicial complex
(union of simplexes) 

Classify topological spaces with 
topological invariances.  



• Homology group: independent “holes”
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𝐻𝑘(𝑋): 𝑘-th homology group of topological space 𝑋 (𝑘 = 0,1,2,…)

𝐻0(𝑋): connected components
𝐻1(𝑋): rings
𝐻2(𝑋): cavities

… 
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Topology of statistical data?
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Noisy finite
sample

True structure

𝜀 −balls
(e.g. manifold learning)

Small 𝜀 disconnected object  

Large 𝜀 small ring is not visible

Stable extraction of topology 
is NOT easy!



Persistence Homology

• All 𝜀 considered
𝑋 = 𝑥𝑖 𝑖=1

𝑚 ⊂ 𝐑𝑑 ,      𝑋𝜀 ≔∪𝑖=1
𝑚 𝐵𝜀(𝑥𝑖)
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𝜀 small 𝜀 large

Two rings （generators of 1 dim homology）

persist in a long interval. 



• Persistence homology (formal definition)
Filtration of topological spaces X ∶ 𝑋1 ⊂ 𝑋2 ⊂ ⋯ ⊂ 𝑋𝐿

𝑃𝐻𝑘(X): 𝐻𝑘 𝑋1 → 𝐻𝑘 𝑋2 → ⋯ → 𝐻𝑘(𝑋𝐿) ≅⊕𝑖=1
𝑚𝑘 𝐼[𝑏𝑖 , 𝑑𝑖]

𝐼 𝑏, 𝑑 ≅ 0 → ⋯ → 0 → 𝐾 → ⋯ → 𝐾 → 0 → ⋯ → 0
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at 𝑋𝑏 at 𝑋𝑑
𝐾: field

Irreducible decomposition

The lifetime (birth, death) of each generator is rigorously defined,
and can be computed numerically.

Birth and death of a generator of 𝑃𝐻1(𝑋)



• Two popular (equivalent) expressions of PH
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𝛼

𝜀

Barcodes and PD are considered for each dimension. 

Bar from the birth to death 
of each generator

Barcode Persistence diagram (PD)

Plots of the birth (b) and death (d)
of each generator of PH 
in a 2D graph  (𝑑 ≥ 𝑏). 

Handy descriptors or features 
of complex geometric objects



Beyond topology

• PH contains geometrical information more than topology
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Barcodes of 
1-dim PH

𝜀



Statistical approach with kernels 
to topological data analysis 
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Statistical approach to TDA

• Conventional TDA
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Data Computation of PH Visualization（PD） Analysis by experts

Software
CGAL / PHAT

CGAL: The Computational Geometry Algorithms Library  http://www.cgal.org/
PHAT: Persistent Homology Algorithm Toolbox  https://bitbucket.org/phat-code/phat

e.g. Molecular 
dynamics simulation

http://www.cgal.org/
https://bitbucket.org/phat-code/phat


• Statistical approach to TDA
（Kusano, Fukumizu, Hiraoka ICML 2016; Reininghaus et al CVPR 2015; Kwitt et al NIPS2015; Fasy et al 2014）
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Many data sets

Computation 
of PH

PD1

PD2

PD3

PDn

Many PD’s

Statistical 
analysis of PD’s

Features / 
Descriptors

But how?



Kernel representation of PD

• Vectorization of PD by positive definite kernel

• PD = Discrete measure       𝜇𝐷 ≔ σ𝑧∈𝑃𝐷 𝛿𝑧

• Kernel embedding of PD’s into RKHS

ℇ𝑘: 𝜇𝐷 ↦ ∫ 𝑘 ⋅, 𝑥 𝑑𝜇𝐷 𝑥 = σ𝑖 𝑘(⋅, 𝑥𝑖) ∈ 𝐻𝑘,    Vectorization

• For some kernels (e.g., Gaussian, Laplace), ℇ𝑘 is injective. 

• By vectorization,

• a number of methods for data analysis can be applied,
SVM, regression, PCA, CCA, etc. 

• tractable computation is possible with kernel trick. 
17

𝑘: positive definite kernel
𝐻𝑘: corresponding RKHS



Persistence Weighted Gaussian (PWG) Kernel

Generators close to the diagonal may be noise, and should be discounted. 

𝑘𝑃𝑊𝐺 𝑥, 𝑦 = 𝑤 𝑥 𝑤 𝑦 exp −
𝑦−𝑥 2

2𝜎2

𝑤 𝑥 = 𝑤𝐶,𝑝 𝑥 ≔ arctan 𝐶Pers 𝑥 𝑝 (𝐶, 𝑝 > 0)

Pers 𝑥 ≔ 𝑑 − 𝑏 for 𝑥 ∈ { 𝑏, 𝑑 ∈ 𝐑2|𝑑 ≥ 𝑏}
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Pers(x1)



• Stability with PWG kernel embedding
• PWGK defines a distance on the persistence diagrams,

𝑑𝑘 𝐷1, 𝐷2 ≔ ℇ𝑘 𝐷1 − ℇ𝑘 𝐷2 𝐻𝑘,        𝐷1, 𝐷2: persistence diagrams

Stability Theorem (Kusano, Hiraoka, Fukumizu 2015) 

𝑀: compact subset in 𝐑𝑑.   𝑆 ⊂ 𝑀, 𝑇 ⊂ 𝐑𝑑: finite sets.

If 𝑝 > 𝑑 + 1, then with PWG kernel (𝑝, 𝐶, 𝜎),

𝑑𝑘 𝐷𝑞(𝑆), 𝐷𝑞(𝑇) ≤ 𝐿 𝑑𝐻 𝑆, 𝑇 .

𝐿: constant depending only on 𝑀, 𝑝, 𝑑, 𝐶, 𝜎

𝐷𝑞(𝑆): 𝑞 th persistence diagram of 𝑆

𝑑𝐻: Haussdorff distance

This stability is NOT known for Gaussian kernel.
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A small change of a set
causes only a small
change in PD

Lipschitz continuity



2nd-level kernel

2nd-level kernel   (SVM for measures, Muandet, Fukumizu, Dinuzzo, Schölkopf 2012)

• RKHS-Gaussian kernel 𝐾 𝜑1, 𝜑2 = exp −
𝜑1−𝜑2 𝐻𝑘

2

2𝜏2

derives

𝐾 𝐷𝑖 , 𝐷𝑗 = exp −
ℇ𝑘(𝐷𝑖)−ℇ𝑘(𝐷𝑗) 𝐻𝑘

2

2𝜏2
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PD1

PD2

PD3

PDm

ℇ𝑘 𝑃𝐷1
ℇ𝑘 𝑃𝐷2

…
ℇ𝑘 𝑃𝐷𝑚

Vectors in RKHSPD’sData sets

Application of pos. def. 
Kernel on RKHS

𝐷𝑖 , 𝐷𝑗: Persistence diagrams

Data analysis method

Embedding



Computational issue

The number of generators in a PD may be large (≥ 103, 104 )

For 𝑃𝐷𝑖 = σ𝑎=1
𝑁𝑖 𝛿

𝑥𝑎
(𝑖) ∪ Δ， 𝐾 𝑃𝐷𝑖 , 𝑃𝐷𝑗 = exp −

ℇ𝑘(𝑃𝐷𝑖)−ℇ𝑘(𝑃𝐷𝑗) 𝐻𝑘

2

2𝜏2
requires 

computation 

ℇ𝑘(𝑃𝐷𝑖) − ℇ𝑘(𝑃𝐷𝑗) 𝐻𝑘

2

= σ𝑎 =1
𝑁𝑖 σ𝑏 =1

𝑁𝑖 𝑘 𝑥𝑎
𝑖
, 𝑥𝑏

𝑖
+ σ

𝑎 =1

𝑁𝑗 σ
𝑏 =1

𝑁𝑗 𝑘 𝑥𝑎
𝑗
, 𝑥𝑏

𝑗
− 2σ𝑎 =1

𝑁𝑖 σ
𝑏 =1

𝑁𝑗 𝑘 𝑥𝑎
𝑖
, 𝑥𝑏

𝑗
.

The number of exp −
𝑥𝑎−𝑥𝑏

2

2𝜎2
＝ 𝑂(𝑚2𝑁2)  computationally expensive for  

𝑁 ≈ 104
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𝑁 = max{𝑁𝑖|𝑖 = 1,… , 𝑛}



• Approximation by random features (Rahimi & Recht 2008) 

By Bochner’s theorem 

exp −
𝑥𝑎−𝑥𝑏

2

2𝜎2
= 𝐶 ∫ 𝑒 −1𝜔𝑇 𝑥𝑎−𝑥𝑏

𝜎2

2𝜋
𝑒−

𝜎2 𝜔 2

2 𝑑𝜔

Approximation by sampling: 𝜔1, … , 𝜔𝐿: 𝑖. 𝑖. 𝑑. ~ 𝑄𝜎

exp −
𝑥𝑎−𝑥𝑏

2

2𝜎2
≈ 𝐶

1

𝐿
σℓ=1
𝐿 𝑒 −1𝜔ℓ

𝑇𝑥𝑎 𝑒 −1𝜔ℓ
𝑇𝑥𝑏

σ𝑎 =1
𝑁𝑖 σ

𝑏 =1

𝑁𝑗 𝑘 𝑥𝑎
𝑖
, 𝑥𝑏

𝑗
≈

𝐶

𝐿
σ𝑎 =1
𝑁𝑖 σ

𝑏 =1

𝑁𝑗 σℓ=1
𝐿 𝑤 𝑥𝑎

𝑖
𝑤 𝑥𝑏

𝑗
𝑒 −1𝜔ℓ

𝑇𝑥𝑎
(𝑖)

𝑒 −1𝜔ℓ
𝑇𝑥𝑏

(𝑗)

=
𝐶

𝐿
σℓ =1
𝐿 σ𝑎 =1

𝑁𝑖 𝑤 𝑥𝑎
𝑖

𝑒 −1𝜔ℓ
𝑇𝑥𝑎

(𝑖)
σ
𝑏=1

𝑁𝑗 𝑤 𝑥𝑏
𝑗

𝑒 −1𝜔ℓ
𝑇𝑥𝑏

(𝑗)

Computational cost 𝑂(𝐿𝑁)  2nd level Gram matrix 𝑂(𝑚𝐿𝑁 +𝑚2𝐿).    c.f. 𝑂(𝑚2𝑁2)

Big reduction if 𝐿, 𝑛 ≪ 𝑁
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Gaussian distribution =:𝑄𝜎

𝐿 dim. 

（Fourier transform）



Comparison: Persistence Scale Space Kernel
(Reininghaus et al 2015)

• PSS Kernel

𝑘𝑅 𝑥, 𝑦 =
1

8𝜋𝑡
exp

𝑥 − 𝑦 2

8𝑡
− exp

𝑥 − ത𝑦 2

8𝑡

ത𝑦 = (𝑑, 𝑏) for 𝑦 = (𝑏, 𝑑).

ℇ𝑘(𝐷) is considered.

• Comparison between PWGK and PSSK 
• PWGK can control the discount around the diagonal independently of the 

bandwidth parameter.

• PSSK is not shift-invariant  Random feature approximation is not applicable.

• In Reininghaus et al 2015, 2nd level kernel is not considered. 
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Pos. def. on 𝑏, 𝑑 𝑑 ≥ 𝑏
0 on Δ.



S0

S1

S1

noise

Data points 1

Data points 2

No S0

Synthetic example: SVM classification

• Classification of PD’s by SVM
• One big circle (random location and sample size) 𝑆1

with or without small circle 𝑆0.

• 𝑌 = XOR(𝑍1, 𝑍2)

• 𝑍1: Does S0 exists?  Yes/No 

• 𝑍2: Is the generator of S1 within ((b(𝑆1)<1 && d(𝑆1))?  Yes/No

• Noise is added, in fact.

• 100 for training  and 100 for testing

• Result (correct classification)

• PWGK (proposed):    83.8%

• PSSK (comparison):  46.5%

24

S1

S0

PD1
𝑌 = 1



Applications
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Application 1: Transition of Silica (SiO2 )

If cooled down rapidly from the liquid state, SiO2 changes into the glass state (not 
to crystal).

Goal: identify the temperature of phase transition.

Data: Molecular Dynamics simulation for SiO2.  3D arrangements of the atoms are 
used for computing PD at 80 temperatures. (Nakamura et al 2015; Hiraoka et al 2015)

26

Examples of PD’s

Liquid Glass (Amorphous)

Amorphous: “soft” structure
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Change point detection

• Data along a parameter 𝑡
𝑋𝑡, 𝑡 = 1,… , 𝑇.  

Kernel Change Point Analysis with Fisher Discriminant score (Harchoui et al 2009):  

For each 𝑡, two classes are defined by the data before and after 𝑡. 
Fisher score on RKHS is used. 

• For each 𝑡, compute ෝ𝑚1:𝑡 =
1

𝑡
σ𝑖=1
𝑡 Φ(𝑋𝑖) and ෝ𝑚𝑡+1:𝑇 =

1

𝑇−𝑡
σ𝑖=𝑡+1
𝑇 Φ(𝑋𝑖). 

• Compute Δ𝑡 ≔ 𝑉1:𝑡 + 𝑉𝑡+1:𝑇 + 𝛾𝐼 −
1

2( ෝ𝑚1:𝑡 − ෝ𝑚𝑡+1:𝑇) 𝐻𝑘

2

.

• Find max
𝑡

Δ𝑡.

• For the packing problem,  𝑋𝑡 = ℇ𝑘 𝐷𝜙𝑡 (𝑡 = 1,… , 80).
28

Change point
𝑡



• Detection of liquid-glass state transition
• Approach in physics: 

Estimation using derivatives of enthalpy curve, but not so accurate. 

• Our approach: purely data-driven

Persistence diagrams, and then change point detection by Kernel FDR.

• Number of generators in a PD is 30000 at most difficult to use PSSK directly

• PWGK (proposed) is applied with random features. 
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30

Detected change point = 3100K

Enthalpy by physicist: [2000K, 3500K]
Δ𝑡



• 2-dim plot by Kernel PCA
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Sharp change between the two phases.

(Colored by the result of change point detection. 
Colors are not used for KPCA). 

The result indicates that the phase can be 
identified by the snap-shot, while this is still 
controversial among physicists. 

Liquid state

glass state



Application 2: Protein classification

• Structure of proteins  Functions

• The geometrical structure can be 
represented by persistence homology

• Classification of proteins with PD’s.

SVM is used.
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• Data A: Protein-drug binding

• M2 channel in the influenza A virus:
a target of medicine.
Biding an inhibitor changes the structure

• Task: Determine from the structure if there is rimantadine (inhibitor) in the 
M2 channel. 

• Data: 3D-structures from NMR
• 15 data for each of binding / non-binding. 
• Random choice of 10 training samples for each class.  The rest is used for testing. 

100 random choices for CV. 
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Cang, Mu, Wu, Opron, Xia, Wei, Molecular Based 
Mathematical Biology (2015) Fig. 3 



• Data B: 2 states of hemoglobin

• Task:  classify of the 2 states Relaxed (R) / Taut (T)

• Data:  3D-stturcures from X-ray diffraction 

• R: 9 data, T: 10 data

• Choice of one data from each class 
for testing, and the rest used for training. 

• All combinations are used for CV. 
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Relaxed (R) Taut (T) 

Cang, Mu, Wu, Opron, Xia, Wei, Molecular Based 
Mathematical Biology (2015) Fig. 4 



• Results
• Comparison with Cang et al (2015), where PH is used with 13 dimensional hand-

made Molecular Topological Fingerprint (MTF) .

• PWGK + SVM:  only 1st PH is used. 
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A. Protein-Drug B. Hemoglobin

PWGK 100 88.90

MTF* (nbd) 93.91 / (bd) 98.31 84.50

# Dim Description

1 0 2nd longest lifetime 

2 0 3rd longest lifetime

3 0 Total sum of lifetme

4 0 Average lifetime

5 1 Birth point of the longest generator

6 1 Longest lifetime

7 1 Birth points of the shortest generator among lifetime ≥1.5Å

8 1 Ave. medium points of generators among lifetime ≥1.5Å

9 1 Number of generators in [4.5, 5.5]Å, divided by total #atoms. 

10 1 Number of generators in  [3.5, 4.5)Å and (5.5, 6.5]Å, divided 
by total #atoms. 

11 1 Total sum of lifetmes

12 1 Average lifetime

13 2 The birth point of the first generator.

MTF

CV classification rates

* Results of MTF are taken from Cang et al. 
Molecular Based Mathematical Biology (2015). 



Conclusion

• Topological data analysis
• Key technology = persistence homology

• PH can introduce useful features / descriptors for complex geometrical 
structures. 

• PH contains information more than topology.  

• Statistical approach to topological data analysis
• Statistical data analysis on many persistence diagrams. 

• Kernel methods introduce systematic data analysis to TDA.

• Vectorization of persistence diagrams by kernel embedding.

• Persistence weighted Gaussian kernel flexible kernel for noise.
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