Articulatory and Spectrum Features Integration Using Generalized Distillation Framework

K. Markov, University of Aizu T. Matsui, ISM

Outline

- Generalized Distillation
 - Hinton's Distillation
 - Vapnik's Privileged Information
- Application in ASR
 - Articulatory and Spectrum Information Integration
 - Feature based Integration
 - Model based Integration
- Experiments and Results
- Conclusions

Hinton's Distillation

- Training many different models on same training data:
 - Improves the performance, but
 - Makes the whole model big and unsuitable in practice.
- How to train single, small model with simlar performance?
 - Use the output of the big model as "soft" targets for the small model – Model Compression (Caruana, 2006).
- When references, i.e. "hard" targets, are available (Hinton, 2015):
 - Combine the "soft" and "hard" targets and control the softness of the "soft" targets.
 - The big model is called *teacher* and the small one *student*.

Hinton's Distillation

• Given the c-class classification task with training data $\{(x_i, y_i)\}_{i=1}^n \sim P^n(x, y), x_i \in \mathbb{R}^d, y_i \in \mathbb{Q}^c$, where \mathbb{Q}^c is a space of c-dimensional probability vectors, teacher training is to find:

$$f_t = \arg\min_{f \in \mathcal{F}_t} \frac{1}{n} \sum_{i=1}^n l\left(y_i, \sigma(f(x_i))\right) + \Omega(\|f\|)$$

where σ () is a softmax, l() is the loss, and Ω () is a regularizer.

Then, for the student we have:

$$f_{s} = \arg\min_{f \in \mathcal{F}_{s}} \frac{1}{n} \sum_{i=1}^{n} \left[(1 - \lambda) l\left(y_{i}, \sigma(f(x_{i}))\right) + \lambda l\left(s_{i}, \sigma(f(x_{i}))\right) \right]$$

where $s_{i} = \sigma(\frac{f_{t}(x_{i})}{T}) \in \mathbb{Q}^{c}$ and $T > 0$ controls the smoothness.

Vapnik's Privileged Information

 Often during training some additional information is available which is not accessible during test time. Given training data

$$\{(x_i, x_i^*, y_i)\}_{i=1}^n \sim P^n(x, x_i^*, y)$$

- How to leverage this information to make better model?
 - The naïve way estimate the mapping $x \xrightarrow{f} x^*$ and generate x^* during testing.
 - Vapnik's way (restricted to SVMs):
 - Similarity Control (Vapnik, 2009). Implemented in SVM+ objective.
 - Knowledge transfer (Vapnik, 2015). Train f_t on $\{(x_i^*, y_i)\}_{i=1}^n$ and use it during the training of f_s on $\{(x_i, y_i)\}_{i=1}^n$.

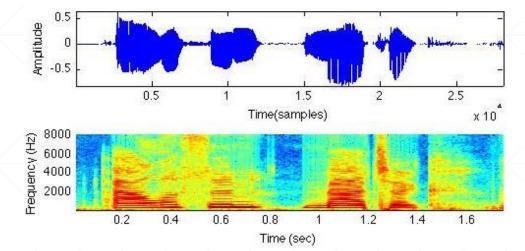
Generalized Distillation

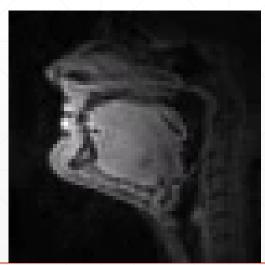
- Combination of Hinton's distillation and Vapnik's privileged information approaches (Lopez-Pas, 2016).
- Three step process. Given training data $\{(x_i, x_i^*, y_i)\}_{i=1}^n$
 - 1. Learn teacher $f_t \in \mathcal{F}_t$ using $\{(x_i^*, y_i)\}_{i=1}^n$;
 - 2. Compute teacher "soft" labels $s_i = \sigma\left(\frac{f_t(x_i^*)}{T}\right)$ for some temperature *T*;
 - **3.** Learn student $f_s \in \mathcal{F}_s$ using both $\{(x_i, s_i)\}_{i=1}^n$ and $\{(x_i, y_i)\}_{i=1}^n$, distillation objective and imitation parameter $\lambda \in [0,1]$.
- Generalized distillation reduces to:
 - Hinton's distillation when $x_i = x_i^*$.
 - Vapnik's method when x_i^* is privileged description of x_i .

Application in Speech Recognition

Features for ASR:

- Spectrum based MFCC, FBANK, etc.
 - Main features, widely used.
 - Easy to obtain.
 - Highly variable.
 - Affected by noise, etc.
- Articulatory movements based.
 - Not affected by noise.
 - Less variable.
 - Difficult to obtain EMA, X-rays, MRI.
 - Impractical for real time ASR.





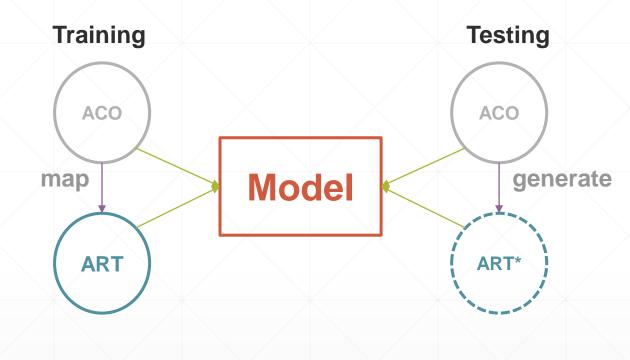
Articulatory and Spectrum Feature Integration

Feature based.

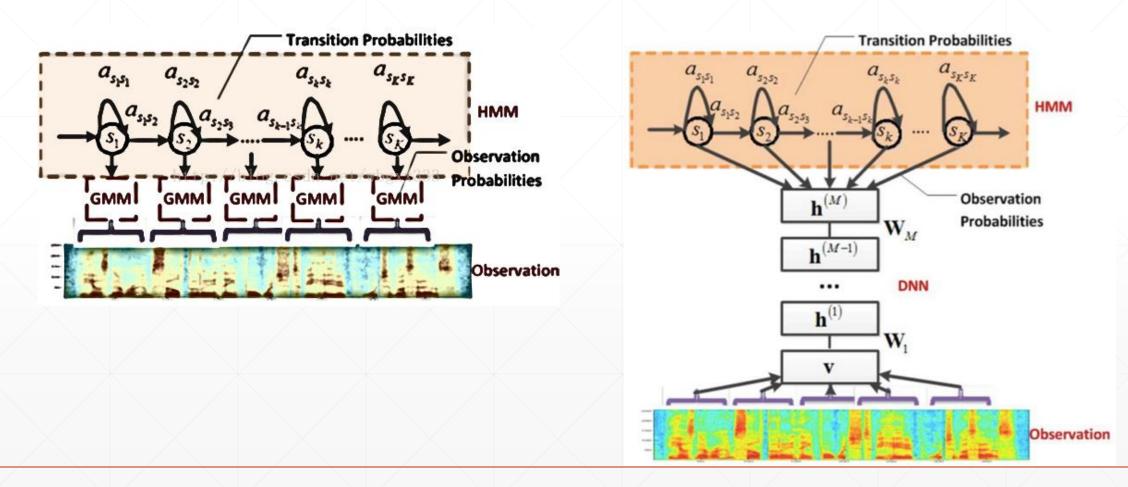
- Articulatory Inversion.
- Most popular approach.
- Mapping with various regression techniques.

Model based.

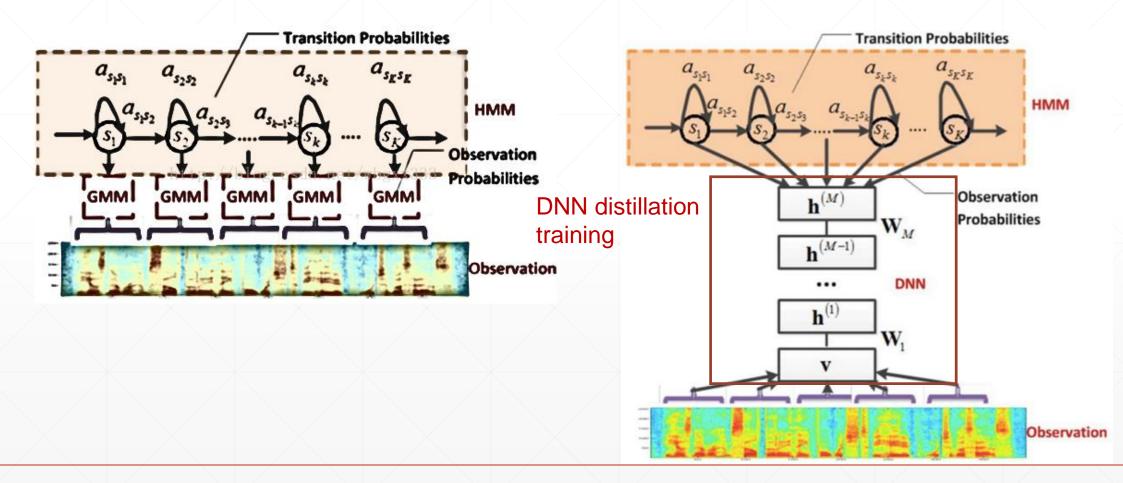
- More difficult.
- HMM/BN (Markov, 2006)
- Generalized Distillation (this work).



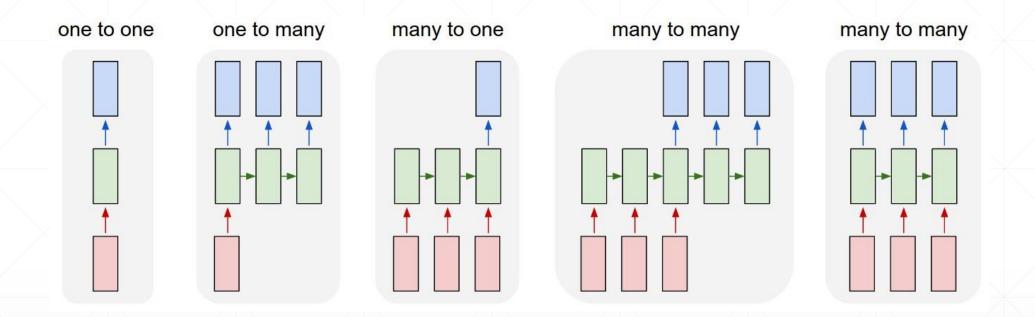
GMM-HMM versus DNN-HMM AMs



GMM-HMM versus DNN-HMM AMs

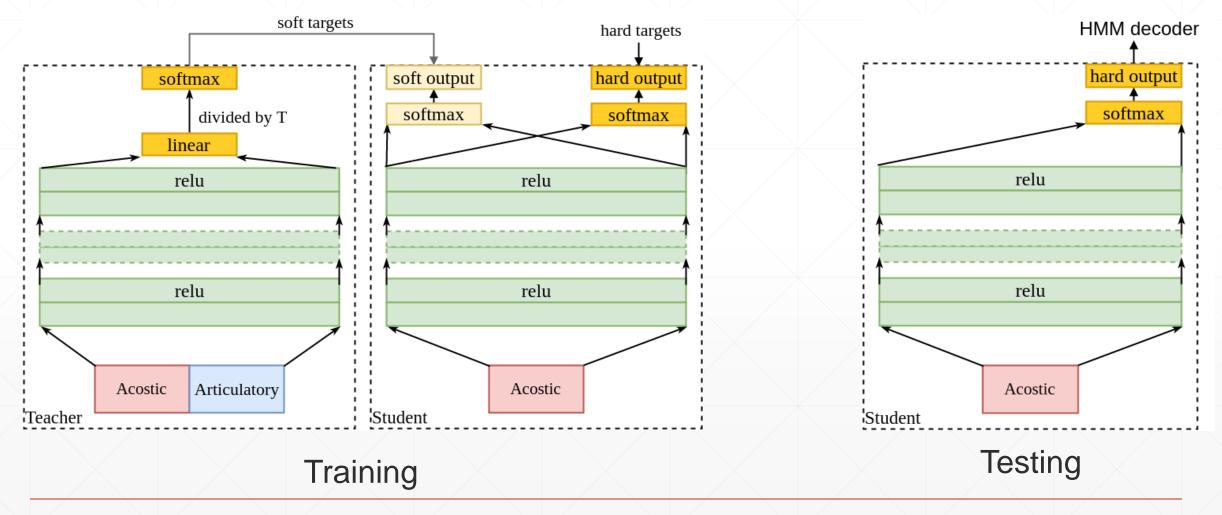


DNN Variants



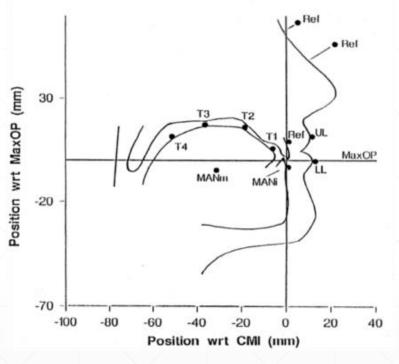
- Feed-Forward: can learn one-to-one mapping
- **Recurrent**: can learn mapping between two sequences

DNN Distillation Training and Testing



Experiments

- Database.
 - University of Wisconsin X-ray micro-beam database (XRMB).
 - Consists of simultaneously recorded acoustic and articulatory measurements from 47 American English speakers.
- Features
 - Acoustic MFCC (39 dim.)
 - Articulatory Displacement of 8 articulatory points (16 dim.)
 - All feature vectors normalized and synchronized.



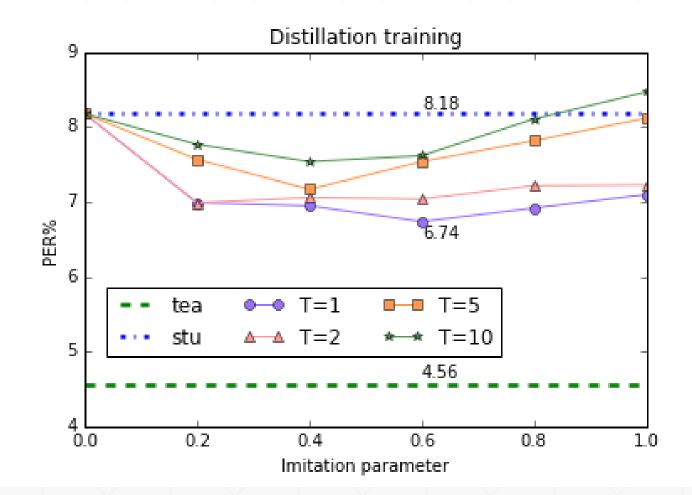
Experiments

Training procedure

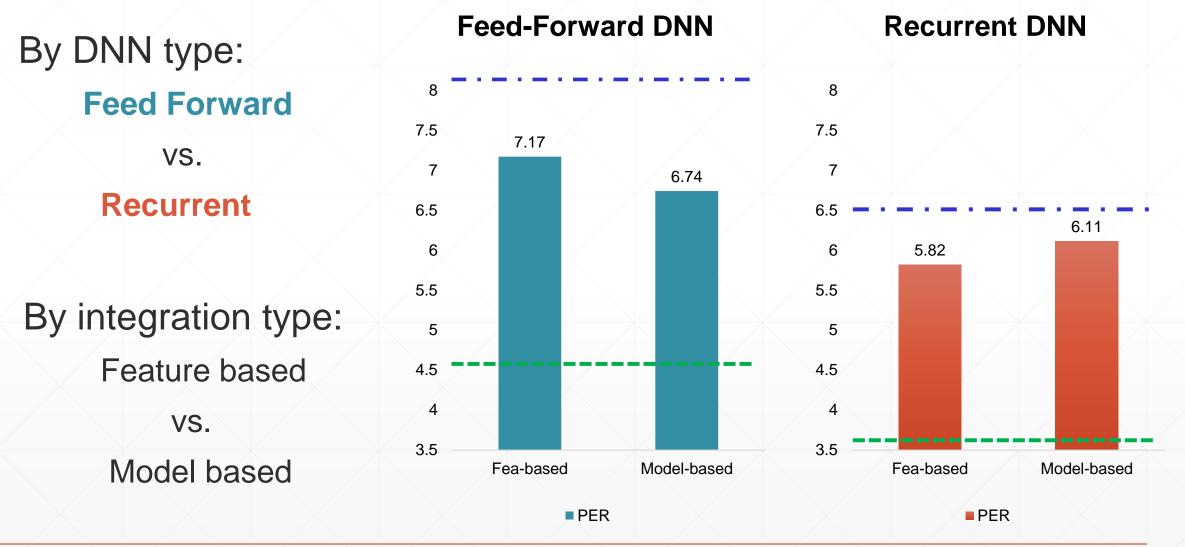
- 1. Train conventional GMM-HMM model using both acoustic and articulatory features.
- 2. Perform forced alignment to obtain DNN "hard" targets.
- 3. Train teacher DNN using both acoustic and articulatory features.
- 4. Train student DNN using acoustic features only and guided by the "teacher".
- Testing procedure
 - 1. Use student DNN with acoustic features only to obtain HMM state probabilities.
 - 2. Use standard HMM decoding (Viterbi) to obtain recognition result.
- Evaluation metric Phoneme Error Rate (PER)

Results

- DNN parameters:
 - Feed Forward.
 - Input widow 17 frames.
 - Activation ReLU.
 - Dropout 40%.
 - Teacher DNN
 - 5 layers
 - 3073 nodes.
 - Student DNN
 - 4 layers
 - 2048 nodes.



Results



Conclusions

Generalized distillation:

- Is an effective method for model based integration of information unavailable at testing time.
- Allows smaller student models (4 layers / 2048 nodes) to reach performance close to bigger teacher models (5 layers / 3072 nodes).

• DNN structure:

- Recurrent DNNs outperform Feed-Forward DNNs in the ASR task since they better model long-term temporal dependencies.
- Time complexity of Recurrent DNNs is higher than Feed-Forward DNNs.

Integration approach:

- Model based and Feature based integration achieve comparable results.
- Feature based integration requires higher computational power.