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Location data is useful 
for many analytic purposes

• Real-time traffic monitoring

• Dynamic population mapping 

• Trade area analysis

• Disaster impact assessments
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However, there is big concern 
on location privacy
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This is a special problem of 
Privacy-preserving data publishing (PPDP)
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System model 
for location sharing services
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1. Remove identifiers
2. Modify location data

- Change granularity
- Add noise



Pseudonym-based approach

Pseudonimity
• Replace owner name of each 
point with untraceable ID
• One unique ID for each owner

Example
• “Larry Page” → “yellow”
• “Bill Gates” → “red”
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Location Traces

• Sequences of location IDS with a timestamp
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Is replacing names with pseudonyms 
sufficient?



時刻

仮名：A

仮名：C

仮名：B
場所

Tomoko’s Home

It’s relatively easy to get additional 
information about your whereabouts

• Your home and office addresses
• Physical observations by accident or stalking 



K-Anonymization for location data

Partial information 
on your location

Anonymized locations traces

1. Link to the candidate
record

2. Learn the complete trajectory

t1 t2 t3 t4

Bob
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t3

l5

Each user’s movements have
distinctive patterns



k-Anonymization of location data

1. Divide the table into 
groups of size k or more

2. Generalize 
data to make 
the records 
identical

Cannot narrow down 
candidate records 
less than k

Partial information 
on your location

Anonymized locations traces
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User t1 t2 t3

Bob {8} {10} {7}

Tom {13} {10} {17}

Original table

PID t1 t2 t3

A {8, 13} {10} {7, 12, 17}

B {8, 13} {10} {7, 12, 17}

2-Anonymous table

Generalization

Example
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What if an adversary knows the 
anonymization algorithm?

If the algorithm choose the 
smallest rectangle containing 
two users, the attacker knows
one user is in grid 7 and the 
other in grid 17.



Knowing users’ mobility patterns 
also helps

It’s unlikely that this guy 
jump over here at one step

Need to use 
a randomized 

algorithm! 



We model a user’s mobility pattern as 
a Markov chain

• Assume that an adversary can obtain a target 
user’s previous trajectories and use them as 
training data

User u’s previous 

trajectories

Markov chain
Pu

Transition count Matrix
TCu



Q: How should we evaluate the safety of 

an anonymized location trajectories? 



Problem setting [Shokri11]

• N users move around a geographical area 

of M regions

at discrete times in

Location trajectories

Users

Time
1 2 T



Suppose that each user’s trajectory is 
anonymized independently, an 

anonymization procedure takes two steps:

1. Perturb each user’s trajectory with a randomized algorithm

where for each i, 

2. Map user names to psuedonyms with the permutation 
function σ: U  U’ = {1,2, …, N}



1. Perturbation of location data

Perturb each user’s trajectory with a randomized algorithm f

where 

– Adding noise

– Generalization (reduce precision)

– Omission (location hiding)



2. Purmutation
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So, an attacker has to do is 
to reverse this process with

A set of
observable sequences

A set of
Markov chains1

. 
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2. For the pair of a target user, compute the prob. dist. 
of                                      by HMM smoothing 



Find an inverse of permutation σ

• Want                                             But N!
combinations 

• Instead, for each pair (u, ox), compute Pr(ox|Pu)

with the forward algorithm

• Consider an edge-weighted bipartite graph of 
traces and users and solve the max weight 
assignment program using the Hungarian 
algorithm



Localization attack: 
Infer user u’s location at time t 

• Compute                                 with the forward-
backward algorithm  



Attacker’s correctness as the measure 
of privacy risk

• Let      be user u’s actual location at time t

• The probability of  getting a correct answer 
would be a reasonable metrics



Preliminary evaluations

• Consider a rectangular region 
of  39 × 30 kilometers in 
Beijing, China

• Use top 10 users in terms of 
data points

• Divide the region into 140 ×
140 (=19,600) unit regions

Q: How many more non-sensitive locations we need to hide to 
protect the secrecy of private locations?

• GPS dataset published by 
Microsoft Asia

• 178 users in the period of four 
years

• Logged every 1 – 5 seconds



Methods

1. Set the initial emission matrix based on users’ private policies S 
such that 

2. Given a threshold δ, if the following is satisfied, exit

Otherwise, randomly pick lj not in S into S and set

and repeat

We skipped the process of matching user IDs and pseudonyms



Initial private locations S0

1. Pick two locations of an restaurant and a hospital, 
which was actually visited by users

• China-Japan Friendship Hospital （N. latitude 39.97260, 
E. longitude 116.42072）

• South Beauty Restaurant （N. latitude 39.99635, E. 
longitude 116.40360 ）

2. Randomly choose a given number of locations 
from the top most frequently visited locations



Results
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However, what if the function f of 
perturbation depends on other records 

as in the case of k-Anonymization?



Summary

• Anonymizing location data has additional 
challenges due to spatial and temporal 
correlations among data points

• HMM provides a basic framework for 
analyzing privacy risks quantitatively

• However, further research is necessary to 
establish a methodology for designing a 
randomized function that produce 
observation traces


