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Introduction
In many applications, we are interested in estimating a signal from a sequence
of noisy observations.

Finance Environmental monitoring

Computer vision-based Video-surveillance
cell tracking algorithms

but also in many others...
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Introduction : HMM

Such problems are generally formulated by an Hidden Markov Model (HMM) :

� The hidden State process : {Xn}n≥1 is a R
d-valued discrete-time

Markov process that is not directly observable. The joint distribution
of this Markov process {Xn}n≥1 is given by,

p(x1:n) = µ(x1)

n∏

k=1

fk(xk|xk−1),

� The observed process : {Yn}n≥1 is such that the conditional joint
density of Y1:n = y1:n given X1:n = x1:n has the following
conditional independence (product) form,

p(y1:n|x1:n) =

n∏

k=1

gk(yk|xk).
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Introduction : HMM

The HMM can be represented by a graphical model that depicts the condi-
tional independence relations :

· · · Xn−1 Xn Xn+1 · · ·

Yn−1 Yn Yn+1

fn(·) fn+1(·)

gn−1(·) gn(·) gn+1(·)

The HMM can be considered as the simplest dynamic Bayesian network.
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Introduction : Tasks of interest for HMMs

What we generally know :

� the observations y0:k

� transition density function fk(·|·), ∀k ∈ N
+

� likelihood density function gk(·|·), ∀k ∈ N
+

What we want to do :

� State inference : How to make probabilistic statements on the
state sequence given the model and the observations ?
Inference about Xn given observations Y1:n = y1:n relies upon the
posterior distribution,

πn(x1:n) := p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
=

p(x1:n)p(y1:n|x1:n)

p(y1:n)
.

� Parameter Inference How to tune the model parameters based on
the observations ?
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Filtering recursions

⇒ Goal : Estimate sequentially Xn given observations up to time n
(Y1:n = y1:n)

⇒ The application of Bayes’ rule leads to the recursion

p(x1:n|y1:n)︸ ︷︷ ︸
πn(x1:n)

=
gn(yn|xn)fn(xn|xn−1)

p(yn|y1:n−1)
p(x1:n−1|y1:n−1)︸ ︷︷ ︸

πn−1(x1:n−1)

,

where

p(yn|y1:n−1) =

∫
gn(yn|xn)fn(xn|xn−1)p(xn−1|y1:n−1)dxn−1:n.
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Filtering recursions

Exact implementation of the filtering recursions

⇒ When x is finite (Baum et al., 1970) The associated

computational cost is |x|2 per time index (for the filtering part).

⇒ In linear Gaussian state-space models (Kalman & Bucy, 1961)
The filtering and prediction recursion is implemented by the Kalman
filter.

However, such exact implementations do not exist for more complex (and
thus realistic) models.
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Filtering recursions

Approximate implementation of the filtering recursions

� EKF (Extended Kalman Filter) Linearization-based approach (for
non-linear Gaussian state space models)

� UKF (Unscented Kalman Filter) [Julier and Uhlmann, 1997]
Point-based approach

� Variational Methods (e.g., [Valpola and Karhunen, 2002]) Based on
parametric density approximation arguments.

⇒ These approximations can be seriously unreliable in numerous cases of
interest.

Attractive alternatives :
 Monte Carlo methods [Handschin and Mayne 1969, Gordon et al.,
1993] : they became very popular with the recent availability of high-
powered computers.
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Traditional MC solution : SMC (particle filter)

Key Idea : Use a sequential version of the Importance Sampling algorithm

At each time step k, we do the following steps :

1. Sample independently Xj
k ∼ qk(·|Xj

k−1), ∀j = 1, · · · , Np

2. Compute weight wj
k ∝ gk(yk|X

j

k
)fk(X

j

k
|Xj

k−1
)

qk(X
j

k
|Xj

k−1
)

, ∀j = 1, · · · , Np

3. Resample the weighted particle set,
{
Xj

k, w
j
k

}Np

i=1
, if necessary

Main difficulty : Hard to design an efficient proposal distribution

Are there any (efficient) alternatives to SMC
for sequential Bayesian inference ?

⇒ Use of Markov Chain Monte Carlo (MCMC) in sequential setting.
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Sequential MCMC : Introduction

Alternatives to Importance Sampling based methods 7→ MCMC :

 more effective in high-dimensional and/or complex systems,

 more flexible : a lot of different sampling strategies can be used.

Traditionally, MCMC methods → Non-sequential setting

But several Sequential Markov Chain Monte-Carlo (MCMC) methods exist and
have shown promising results !

[Berzuini et al., 1997, Golightly and Wilkinson, 2006, Septier et al., 2009,
Brockwell et al., 2010, Septier and Peters, 2016]
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Sequential MCMC : Introduction

Why MCMC methods are generally more effective

in complex problems than IS ?

Importance Sampling :

� Difficult to find a suitable proposal distribution in high dimensions

MCMC :

� Key idea : Create a dependent sample, i.e. Xn depends on the previous
value Xn−1.

 allows for “local” updates. Key point to deal with high
dimensional problems

� How ? Construct a Markov chain X1, X2, . . . whose stationary
distribution is the target distribution of interest π

Let us briefly recall the principle of MCMC methods
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MCMC : Principle

� We know the target distribution up to a normalizing constant :
π(x) = γ(x)/Z

� We define a proposal distribution q(·|x)

� Initialization of the first sample of the Markov chain X0

� From the current value of the chain, Xn, we propose a sample from
q(·|Xn) and we accept or reject according to some probability that will
ensure that the stationary distribution of the Markov chain is the target
distribution π

� the first samples of the chain are discarded (“burn-in” period)
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MCMC Review : Metropolis-Hastings algorithm

Algorithm : Metropolis-Hastings (MH)

Starting with X0 and iterate for n = 1, 2, . . .

1. Draw X∗ ∼ q(·|Xn−1) (Proposal value)

2. Compute

α(X∗|Xn−1) = min

{
1,

π(X∗)

q(X∗|Xt−1)

q(Xn−1|X∗)

π(Xn−1)

}

= min

{
1,

γ(X∗)

q(X∗|Xn−1)

q(Xn−1|X∗)

γ(Xn−1)

}

3. With probability α(X∗|Xn−1) set Xn = X∗, otherwise set
Xn = Xn−1
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MCMC : Illustration Metropolis-Hastings

Illustration with a two-dimensional state (d = 2)
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MCMC : Choice of the MH proposal

� Independent Metropolis-Hastings
• Take q(X∗|Xn−1) = g(X∗) (independent of Xn−1)
• g is generally chosen to be an approximation to π
• Probability of acceptance becomes

min

{

1,
γ(X∗)

g(X∗)

g(Xn−1)

γ(Xn−1)

}

� Random-Walk Metropolis Hastings [local moves]
• The proposal is q(X∗|Xn−1) = g(X∗ −Xn−1) with g being a

symmetric distribution, thus

X∗ = Xn−1 + ǫ with ǫ ∼ g

• Probability of acceptance becomes

min

{

1,
γ(X∗)

g(X∗ −Xn−1)

g(Xn−1 −X∗)

γ(Xn−1)

}

= min

{

1,
γ(X∗)

γ(Xn−1)

}

• We accept
− every move to a more probable state with probability 1.
− moves to less probable states with a probability γ(X∗)/γ(Xn−1) < 1
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Sequential MCMC : General Principle
At time step n, the target distribution of interest to be sampled from is

p(x1:n|y1:n)︸ ︷︷ ︸
πn(x1:n)

∝ gn(yn|xn)fn(xn|xn−1) p(x1:n−1|y1:n−1)︸ ︷︷ ︸
πn−1(x1:n−1)

.
(1)

Impossible to sample from p(x1:n−1|y1:n−1) (with constant complexity ∀n)

Key Idea of SMCMC :
Replace p(x1:n−1|y1:n−1) by an empirical approximation obtained from the algorithm
in the previous recursion.

π̆n(x1:n) ∝ gn(yn|xn)fn(xn|xn−1)π̂(x1:n−1), (2)

with

π̂(x1:n−1) =
1

N

N+Nb∑

m=Nb+1

δXm
n−1,1:n−1

(dx1:n−1), (3)

where
{
Xm

n−1,1:n−1

}N+Nb

m=Nb+1
: N samples of the Markov chain obtained at the pre-

vious (n− 1)-th time step for which the stationary distribution was π̆n−1(x1:n−1).

⇒ an MCMC Kernel can thus be employed to obtain a Markov chain(
X1

n,1:n,X
2
n,1:n, . . .

)
, with stationary distribution π̆n(x1:n) as defined in Eq. (2).
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Sequential MCMC : General Principle

General SMCMC for filtering

1. If time n = 1

2. For j = 1, . . . , N +Nb

3. Sample Xj
1,1 ∼ K1(X

j−1
1,1 , ·) with K1 an MCMC kernel of invariant

distribution π1(x1) ∝ g1(y1|x1)µ(x1).

4. Elseif time n ≥ 2

5. For j = 1, . . . , N +Nb

6. [OPTIONAL] Refine empirical approximation of previous posterior
distributions as described in [Brockwell et al., 2010]

7. Sample Xj
n,1:n ∼ Kn(X

j−1
n,1:n, ·) with Kn an MCMC kernel of invariant

distribution π̆n defined in Eq. (2).

8. Output : Approximation of the posterior distribution with the following empirical
measure :

π̆n(x1:n) ≈
1

N

N+Nb∑

j=Nb+1

δ
X

j
n,1:n

(dx1:n)
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SMCMC : Design of the MCMC Kernel
At each time n the target distribution is

π̆n(x1:n) ∝ gn(yn|xn)fn(xn|xn−1)

N+Nb∑

m=Nb+1

δXm
n−1,1:n−1

(dx1:n−1) (4)

Empirical posterior ⇒ the proposal within the MCMC kernel is such that

q(x1:n|X
i−1
n,1:n) = q(xn|X

i−1
n,1:n, x1:n−1) q(x1:n−1|X

i−1
n,1:n)︸ ︷︷ ︸

Discrete Support
{

Xm
n−1,1:n−1

}N+Nb

m=Nb+1

(5)

Sampling from an MCMC kernel of invariant distribution π̆n

1. Generate X∗
n,1:n−1 ∼

∑Nb+N
m=Nb+1 α

mδXm
n−1,1:n−1

(dx1:n−1)

2. Generate X∗
n,n ∼ q(xn|X

i−1
n,1:n,X

∗
n,1:n−1)

3. Accept the candidate Xi
n,1:n = X∗

n,1:n with probability :

α = min

{

1,
π̆n(X∗

n,1:n)

q(X∗
n,1:n|X

i−1
n,1:n)

q(Xi−1
n,1:n|X

∗
n,1:n)

π̆n(X
i−1
n,1:n)

}

= min




1,
gn(yn|X∗

n,n)fn(X
∗
n,n|X

∗
n,n−1)

q(X∗
n,n|X

i−1
n,1:n,X

∗
n,1:n−1)α

m∗

q(Xi−1
n,n |X∗

n,1:n,X
i−1
n,1:n−1)α

mi−1

gn(yn|X
i−1
n,n )fn(X

i−1
n,n |Xi−1

n,n−1)
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Massive data context

At each time n → The MCMC kernel requires the computation of the likelihood

α = min

{

1,
gn(yn|X

∗
n,n)fn(X

∗
n,n|X

∗
n,n−1)

q(X∗
n,n|X

i−1
n,1:n, X

∗
n,1:n−1)α

m∗

q(Xi−1
n,n |X∗

n,1:n, X
i−1
n,1:n−1)α

mi−1

gn(yn|X
i−1
n,n )fn(X

i−1
n,n |Xi−1

n,n−1)

}

⇒ Prohibitive for tall dataset, i.e. yn contains a large number Mn of individual
(independent) data points

gn(yn|X
∗
n,n) =

Mn
∏

k=1

gn(yn,k|X
∗
n,n)

Objective : Adapt recent advances in static MCMC simulation for tall data
to the sequential setting.
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MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups

1. Subsampling-based approaches,

2. Divide-and-Conquer Algorithms

See [Bardenet et al., 2015] for a detailed review.

Receive observations

Compute filtering
distribution using the

data

Page 20/37



MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups

1. Subsampling-based approaches,

2. Divide-and-Conquer Algorithms

See [Bardenet et al., 2015] for a detailed review.

Receive observations

Compute filtering
distribution using a subset

of the data

Page 20/37



MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups
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subset of the data
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Subsampling-based approach

Let us recall the acceptance ratio of the SMCMC :

α = min

{

1,
gn(yn|X

∗
n,n)fn(X

∗
n,n|X

∗
n,n−1)

q(X∗
n,n|X

i−1
n,1:n, X

∗
n,1:n−1)α

m∗

q(Xi−1
n,n |X∗

n,1:n, X
i−1
n,1:n−1)α

mi−1

gn(yn|X
i−1
n,n )fn(X

i−1
n,n |Xi−1

n,n−1)

}

The state X∗
n,1:n is accepted when (with u ∼ U[0,1])

u <

∏Mn

k=1 gn(yn,k|X
∗
n,n)fn(X

∗
n,n|X

∗
n,n−1)

q(X∗
n,n|X

i−1
n,1:n, X

∗
n,1:n−1)α

m∗

q(Xi−1
n,n |X∗

n,1:n, X
i−1
n,1:n−1)α

mi−1

∏Mn

k=1 gn(yn,k|X
i−1
n,n )fn(X

i−1
n,n |Xi−1

n,n−1)

1

Mn

log

[

u
fn(X

∗
n,n|X

∗
n,n−1)q(X

i−1
n,n |X∗

n,1:n, X
i−1
n,1:n−1)α

mi−1

fn(X
i−1
n,n |Xi−1

n,n−1)q(X
∗
n,n|X

i−1
n,1:n, X

∗
n,1:n−1)α

m∗

]

<
1

Mn

Mn
∑

k=1

log

[

gn(yn,k|X
∗
n,n)

gn(yn,k|X
i−1
n,n )

]

ψn(X
∗
n,1:n, X

i−1
n,1:n) < ΛMn(X

i−1
n,n , X

∗
n,n)
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Subsampling-based approach

[Bardenet et al., 2015] develops a (static) confidence MH sampler for using

Λ∗
t (X

i−1
n,n , X

∗
n,n) =

1

t

t
∑

k=1

log

[

gn(yn,k|X
∗
n,n)

gn(yn,k|X
i−1
n,n )

]

instead of ΛMn(X
i−1
n,n , X

∗
n,n) that uses all the data (t < Mn)

� By using concentration bounds - for a given δ > 0, (ct(δ), t) can be found
such that

P

[

|Λ∗
t (X

i−1
n,n , X

∗
n,n)− ΛMn(X

i−1
n,n , X

∗
n,n)| ≤ ct(δ)

]

≥ 1− δ

 sampling t from Mn data points without replacement

ct(δ) = σ̂t

√

2 log(3/δ)

t
+

3R log(3/δ)

t
[Empirical Berstein Bound]

with σ̂t : empirical std of the log likelihood ratios.
R = max1≤k≤Mn | log gn(yn,k|X

∗
n,n)− log gn(yn,k|X

i−1
n,n )|

� Propose an adaptive procedure for t such that the MH acceptance
decision is recovered with probability 1− δ
increase t until the condition
|Λ∗

t (X
i−1
n,n , X

∗
n,n)− ψn(X

∗
n,1:n, X

i−1
n,1:n)| > ct(δ) is satisfied
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Subsampling-based approach with control variates

In the empirical Bernstein bound,

ct(δ) = σ̂t

√
2 log(3/δ)

t
+

3R log(3/δ)

t
[Empirical Berstein Bound]

the leading term is σ̂t/
√
t

where σ̂t : empirical std of the log likelihood ratios

{
log

gn(yn,k|X∗
n,n)

gn(yn,k|X i−1
n,n )

, k = 1, . . . , t

}

To reduce this term, [Bardenet et al., 2015] proposes to use proxies as
control variates
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Subsampling-based approach with control variates

Assume you have

℘n,k(X
i−1
n,n , X

∗
n,n) ≈ log gn(yn,k|X

∗
n,n)− log gn(yn,k|X

i−1
n,n )

then the MH acceptance decision is equivalent to

1

Mn

Mn
∑

k=1

[

log
gn(yn,k|X

∗
n,n)

gn(yn,k|X
i−1
n,n )

− ℘n,k(X
i−1
n,n , X

∗
n,n)

]

> ψn(X
∗
n,1:n, X

i−1
n,1:n)

−
1

Mn

Mn
∑

k=1

℘n,k(X
i−1
n,n , X

∗
n,n)

and the leading term of Bernstein’s bound now uses the std of

{

log
gn(yn,k|X

∗
n,n)

gn(yn,k|X
i−1
n,n )

− ℘n,k(X
i−1
n,n , X

∗
n,n), k = 1, . . . , t

}

Example of proxy  Taylor series of the log-likelihood ratio

� Average of the proxies 1
Mn

∑Mn

k=1 ℘n,k(X
i−1
n,n , X

∗
n,n) easy to compute

� Bound R = max1≤k≤Mn | log
gn(yn,k|X

∗
n,n)

gn(yn,k|X
i−1
n,n )

− ℘n,k(X
i−1
n,n , X

∗
n,n)| obtained

from the Taylor-Lagrange inequality
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Divide-and-Conquer based approach

Previous approach : Subsampling  only a subset of all the data is used

Now we adapt (in the sequential setting) a divide-and-conquer approach
based on Expectation-Propagation (EP) [Xu et al., 2014, Gelman et al., 2014]

Receive observations

Compute local filtering
distribution using a
subset of the data

Compute local filtering
distribution using a
subset of the data

Key Idea :

1. Partition the Mn measurements into D (disjoint) subsets

2. Run a filter locally on each subset

Challenge : How to combine results from local computation
 EP (variational message passing algorithm) [Minka, 2001]
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Divide-and-Conquer - EP SMCMC

Let us recall the true target distribution

π̆n(xn) ∝
D∏

d=1

gn(yn,Ωd
|xn)

N+Nb∑

m=Nb+1

fn(xn|xn−1 = Xm
n−1,1:n−1)

We define a local target distribution for an individual computing node :

π̆d
n(xn) ∝ gn(yn,Ωd

|xn)

D∏

c=1

6=d

h(xn; ηc)

N+Nb∑

m=Nb+1

fn(xn|xn−1 = Xm
n−1,1:n−1)

where the distribution h(xn; ηc) (e.g. from an exponential family with na-
tural parameters ηc) is an approximation of the likelihood on the c-th node.

Page 26/37



Divide-and-Conquer - EP SMCMC

At the dth note, the local target distribution is :

π̆d
n(xn) ∝ gn(yn,Ωd

|xn)
D
∏

c=1

6=d

h(xn; ηc)

N+Nb
∑

m=Nb+1

fn(xn|xn−1 = Xm
n−1,1:n−1)

1. Draw samples from the MCMC kernel with invariant distribution π̆d
n(xn)

2. Update the natural parameters (NP), ηd associated to the likelihood used
in this node  KL minimization which leads to

ηd = ηp,d −



ηf,d +
∑

i6=d

ηi





3. These natural parameters are distributed to all D \ d computing nodes.

This procedure is

� performed on all nodes which distribute their NP update to the other ones

� repeated several times.

Finally, the samples from all the local nodes (of the last EP iter.) are kept for
approximating of the posterior distribution.
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Numerical Simulations

We compare performances of :

� SMCMC : Sequential MCMC

� AS-SMCMC : Adaptive Subsampling SMCMC
 2nd order Taylor series of log lik. as proxy

� EP-SMCMC : Expectation-Propagation SMCMC
 Multivariate normal distribution for local approx.

in two differents models

� linear and Gaussian state-space model,

� Multiple target tracking in clutter.
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Numerical Simulations : Model 1

fn(xn|xn−1) = N (xn;Axn−1, Q)

gn(yn|xn) =

Mn∏

k=1

gn(yn,k|xn) =

Mn∏

k=1

N (yn,k;Hxk, R) .

Within this model, the filtering distribution is tractable  Kalman filter

Parameters of the different algorithms chosen such that the number of
generated samples is the same.
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Numerical Simulations : Model 1

Table – Algorithm computation time per time step (AS-SMCMC/SMCMC :
Np = 4000 - EP-SMCMC : L = 2, D = 4 and Np = 500.

Algorithms Mn = 500 Mn = 5000
Time [s] Computational

Gain [%]
Time [s] Computational

Gain [%]

SMCMC 114.75 0 1087.93 0
AS-SMCMC 69.54 39.4 274.60 74.76
EP-SMCMC 9.89 91.38 96.40 91.14

⇒ Computational saving with both AS and EP
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Numerical Simulations : Model 1

To analyze the quality of the empirical approx. of the filtering distribution :
 Study of the Kolmogorov-Smirnov (KS) statistic

KS = sup
x

(
F̂ (x) −G(x)

)
,

where

� F̂ (x) : empirical cumulative density function of the filtering obtained
from the MCMC samples

� G(x) : true filtering cdf from the Kalman filter.
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Numerical Simulations : Model 1

Figure – KS statistics with 500 measurements
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� Quite similar performances for SMCMC and AS-SMCMC (1− δ = 90%)

� EP-SMCMC depends on #nodes (D) and #particles per node Np

 Favorable scenario for EP-SMCMC since Gaussian is used as approx.
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Numerical Simulations : Model 1

Figure – KS statistics with 5000 measurements

✷ ✹ ✻ ✽ ✶� ✶✷ ✶✹ ✶✻ ✶✽ ✷�
�✵�✁

�✵✶

�✵✶✁

�✵✷

�✵✷✁

�✵✂

�✵✂✁

�✵✹

�✵✹✁

�✵✁

❚✄☎✆ ✝✞✆✟✝

❑
✠

✡
☛☞
☛✌
✡
☛✌
✍

❙✎✏✎✏

❆❙✑❙✎✏✎✏

❊✒✑❙✎✏✎✏✓✔✕✹✖✗
♣
✕✁��❂

Page 32/37



Numerical Simulations : MTT

Aim : Detect, track and identify each targets from a sequence of noisy observations.
State-space model :

� Each target follows independently some dynamical model (e.g. near constant
velocity model)

� Observation Model : Poisson point process model [Gilholm and Salmond, 2005]

Assumed a set of sensor measurements yn =
{
yn,1, ..., yn,Mn

}
coming from a target

or clutter (false alarm).
The likelihood function of the observations can be expressed as

gn(yn|xn) =
e−µn

Mn!

Mn∏

m=1

λ(yn,m)

where µn = ΛC +NT,nΛ
n
x is the expected total number of measurements received at

time tn and

λ(yn,m) =

NT,n∑

k=1

Λn
xpx(yn,m|xn,k) + ΛCpC(yn,m)

with Λn
xpx(.) and ΛCpC(.) being the Poisson intensity functions of target and clutter

measurements and NT,n the number of targets at time tn.
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Numerical Simulations : MTT

Figure – Exemple of target’ trajectory and associated measurements
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Numerical Simulations : MTT

Figure – Root Mean Square Error on the targets’ position
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Good tracking performances but
� some RMSE increase for the EP-SMCMC  Gaussian Approx.

likelihood.
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Conclusion

� Adapt to the sequential setting two recent approaches proposed for static
MCMC with tall dataset

� Interesting computational savings,

� Expectation-Propagation based algo suffers from the choice of parametric
distribution to use to approximate local likelihoods

Ongoing work :

� Study the non uniform sampling with replacement in the Adative
Subsampling approach.
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