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Introduction

In many applications, we are interested in estimating a signal from a sequence
of noisy observations.

MATCH simulation of the Chernobyl accident

Environmental monitoring
i 5| LU e

Computer vision-based Video-surveillance
cell tracking algorithms

but also in many others...
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Introduction : HMM

Such problems are generally formulated by an Hidden Markov Model (HMM) :

= The hidden State process : {X,,}, -, is a R%-valued discrete-time
Markov process that is not directly observable. The joint distribution
of this Markov process {X,}, -, is given by,

n
p(z1:) = H (zklR-1)

= The observed process : {Y,,}, -, is such that the conditional joint
density of Yi., = y1.n given X1., = Z1.n, has the following
conditional independence (product) form,

S

P(Y1:n|T10) H (Yk|ok)-
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Introduction : HMM

The HMM can be represented by a graphical model that depicts the condi-
tional independence relations :

fn() fria ()

Xpg — X, ——| X1

gn-1(") gn(+) Int1(:)

Yn— 1 Yn Yn-i—l

The HMM can be considered as the simplest dynamic Bayesian network.
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Introduction : Tasks of interest for HMMs

What we generally know :
® the observations yg.x
® transition density function fi(-|-), Vk € N*
® likelihood density function gi(-|-), Vk € N*
What we want to do :

m State inference : How to make probabilistic statements on the
state sequence given the model and the observations ?
Inference about X, given observations Y7.,, = y1.,, relies upon the
posterior distribution,

o 2 _ p(xl:nvyl:n) _ p(xl:n)p(ylzn|x1:n)
ﬂ-n(xl:n) o p( 1:n|y1:n) B p(yl:n) B p(yl:n) '

® Parameter Inference How to tune the model parameters based on
the observations ?
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Filtering recursions

= Goal : Estimate sequentially X, given observations up to time n
(Yi:n = yl:n)
= The application of Bayes' rule leads to the recursion

gn(yn|xn)fn(xn|xn—1)
p(yn|y1:n—1)

Tn(Z1:n) Tn—1(T1:n—1)

p(xl:n|y1:n) - p(xlzn—1|y1:n—1)7
—_——— —_————

where

p(yn|y1:n—1> :/gn(yn|xn>fn(xn|xn—l>p(xn—l|yl:n—1>dxn—1:n'

Page 6/37



Filtering recursions

Exact implementation of the filtering recursions

= When x is finite (Baum et al., 1970) The associated
computational cost is ||> per time index (for the filtering part).

= In linear Gaussian state-space models (Kalman & Bucy, 1961)

The filtering and prediction recursion is implemented by the Kalman
filter.

However, such exact implementations do not exist for more complex (and
thus realistic) models.
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Filtering recursions

Approximate implementation of the filtering recursions

m EKF (Extended Kalman Filter) Linearization-based approach (for
non-linear Gaussian state space models)

m UKF (Unscented Kalman Filter) [Julier and Uhlmann, 1997]
Point-based approach

® Variational Methods (e.g., [Valpola and Karhunen, 2002]) Based on
parametric density approximation arguments.

= These approximations can be seriously unreliable in numerous cases of
interest.

Attractive alternatives :

~» Monte Carlo methods [Handschin and Mayne 1969, Gordon et al.,
1993] : they became very popular with the recent availability of high-
powered computers.
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Traditional MC solution : SMC (particle filter)

Key ldea : Use a sequential version of the Importance Sampling algorithm

At each time step k, we do the following steps :
1. Sample independently X,z ~ (X)), Yi=1,--- N,

gl X)) fe(XT1X3 1)
ak(X]1X7_q)

2. Compute weight wi o JVi=1,---,N,

3N
3. Resample the weighted particle set, {X,i,wfc} ! , if necessary
1

i=
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Traditional MC solution : SMC (particle filter)

Key ldea : Use a sequential version of the Importance Sampling algorithm

At each time step k, we do the following steps :
1. Sample independently X,z ~ (X)), Yi=1,--- N,

gl X)) fe(XT1X3 1)
ak(X]1X7_q)

2. Compute weight wi o JVi=1,---,N,

3N
3. Resample the weighted particle set, {X,]C,wfc} ! , if necessary
=1

i=

Main difficulty : Hard to design an efficient proposal distribution
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Traditional MC solution : SMC (particle filter)

Key ldea : Use a sequential version of the Importance Sampling algorithm

At each time step k, we do the following steps :
1. Sample independently X,z ~ (X)), Yi=1,--- N,

gl X)) fe(XT1X3 1)
ak(X]1X7_q)

2. Compute weight wi o JVi=1,---,N,

3N
3. Resample the weighted particle set, {X,i,wfc} ! , if necessary
=1

i=

Main difficulty : Hard to design an efficient proposal distribution

Are there any (efficient) alternatives to SMC

for sequential Bayesian inference ?

= Use of Markov Chain Monte Carlo (MCMC) in sequential setting.
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Sequential MCMC : Introduction

Alternatives to Importance Sampling based methods +— MCMC :
~» more effective in high-dimensional and/or complex systems,

~ more flexible : a lot of different sampling strategies can be used.

Traditionally, MCMC methods — Non-sequential setting

But several Sequential Markov Chain Monte-Carlo (MCMC) methods exist and
have shown promising results !

[Berzuini et al., 1997, Golightly and Wilkinson, 2006, Septier et al., 2009,
Brockwell et al., 2010, Septier and Peters, 2016]
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Sequential MCMC : Introduction

Why MCMC methods are generally more effective
in complex problems than IS ?

Importance Sampling :

® Difficult to find a suitable proposal distribution in high dimensions

MCMC :

B Key idea : Create a dependent sample, i.e. X" depends on the previous
value X1

~ allows for “local” updates. «_ Key point to deal with high

dimensional problems

B How ? Construct a Markov chain X!, X2 ... whose stationary
distribution is the target distribution of interest 7

Let us briefly recall the principle of MCMC methods
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MCMC : Principle

B We know the target distribution up to a normalizing constant :
m(x) =~(x)/Z

B We define a proposal distribution ¢(-|z)

B Initialization of the first sample of the Markov chain X°

B From the current value of the chain, X", we propose a sample from
q(-|X™) and we accept or reject according to some probability that will
ensure that the stationary distribution of the Markov chain is the target
distribution 7

B the first samples of the chain are discarded (“burn-in" period)
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MCMC Review : Metropolis-Hastings algorithm

Algorithm : Metropolis-Hastings (MH)

Starting with X and iterate for n = 1,2, ...
1. Draw X* ~ ¢(|X"~') (Proposal value)
2. Compute

a(X*|X™ 1) = min{l’q( m(X*) Q(X”‘1|X*)}

X*|Xt—l) ’/T(X”_l)
_ min{l v(X) q(X”‘llX*)}
g q(X*|Xn—1) py(Xn—l)

3. With probability a(X*|X"71) set X™ = X*, otherwise set
X" = Xn—l
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MCMC : lllustration Metropolis-Hastings

x®

lllustration with a two-dimensional state (d = 2)
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MCMC : Choice of the MH proposal

® Independent Metropolis-Hastings
o Take ¢(X*|X™ 1) = g(X™) (independent of X" 1)
o g is generally chosen to be an approximation to m
» Probability of acceptance becomes
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MCMC : Choice of the MH proposal

® Independent Metropolis-Hastings
o Take ¢(X*|X™ 1) = g(X™) (independent of X" 1)
o g is generally chosen to be an approximation to m
» Probability of acceptance becomes

1.6 2

® Random-Walk Metropolis Hastings [local moves]
« The proposal is ¢(X*|X"™!) = g(X* — X"™') with g being a
symmetric distribution, thus

X*=X""'4e withe~yg
o Probability of acceptance becomes

v(X) g(X"‘l—X*)}:min{l’ v(X) }

min {1’ oK — X)X X1

» We accept

— every move to a more probable state with probability 1.
— moves to less probable states with a probability v(X*)/y(X"~1) < 1
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Sequential MCMC : General Principle

At time step n, the target distribution of interest to be sampled from is

p(xl:n|y1:n) x gn(ynktn)fn(xn'xn—l)p(xl:n—1|y1:n—1) .
N——— —

Tn(Z1:n) Tn—1(T1:n—1)
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Sequential MCMC : General Principle

At time step n, the target distribution of interest to be sampled from is

p(xl:n|y1:n) x gn(yn|xn)fn(mn|xn—l)p(z1:n—lIyl:n—1)~
N——— S——
Tn (€1:n) Tn—1(T1:n—1)
Impossible to sample from p(z1.r,—1|y1:n—1) (with constant complexity Vn)

Key Idea of SMCMC :
Replace p(z1:n—1|y1:n—1) by an empirical approximation obtained from the algorithm
in the previous recursion.

7\'Jrn(zlzn) X gn(ynlxn)fn(xn|zn—1)%($1:n—1), (2)
with
1 NN
%(zlznfl) - N Z (‘SX;L"?1 1m71(dx1:n71)a (3)
m=Np+1 '
N+N, ) .
where {X;nfl’l’"*l}msz+1 : N samples of the Markov chain obtained at the pre-

vious (n — 1)-th time step for which the stationary distribution was %, —1(1:n—1).

= an MCMC Kernel can thus be employed to obtain a Markov chain

(X,%_l:n,_\'z ) ), with stationary distribution 7, (z1.,) as defined in Eq. (2).

n,liny" "
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Sequential MCMC : General Principle

General SMCMC for filtering

1.
2.
3.

If timen =1
Forj=1,..., N+ N,
Sample X{,l ~ ICl(X{fll, -) with K1 an MCMC kernel of invariant
distribution 71 (1) o< g1 (y1|z1)p(x1).
Elseif time n > 2
Forj=1,...,N+ N,
[OPTIONAL] Refine empirical approximation of previous posterior
distributions as described in [Brockwell et al., 2010]

Sample X7 ~ K, (X271 ) with K, an MCMC kernel of invariant

G i) n,l:n’

distribution it,, defined in Eq. (2).

Output : Approximation of the posterior distribution with the following empirical

measure :
N+N,

fn(eun) ® = D0 Oy (doun)
] Np+1 mlin
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SMCMC : Design of the MCMC Kernel

At each time n the target distribution is

N+N,

7Yl'n(ml:n) 0(gn(y'n|xn)fn(Ctnlxn—l) Z 6X
m=Np+1

(dz1:n—1) (4)

m
n—1,1:in—1

Empirical posterior = the proposal within the MCMC kernel is such that
q($1:n|X::11;n) = Q($n|X:L,_11n, xl:nfl) l](¢1:n—1|X;,_11:n) (5)
N —
Discrete Suppor‘t{){m }

n—1,1in—1

N+4Ny
m=Np+1
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SMCMC : Design of the MCMC Kernel

At each time n the target distribution is
N+N,
7\"rn(ml:n) X gn(ynlxn)fn(xn|xn—l) Z (sX:{L1 lim—1 (dxl:n—l) (4)
m=Np+1 ’

Empirical posterior = the proposal within the MCMC kernel is such that

q(xlznlxi’_ll;n) = Q($n|X:L,_11n, xl:nfl) l](£1:n—1|XTiL,_11:n) (5)
N—_—— —
Discrete Suppor‘t{){m }

n—1,lin—1

N+4Ny
m=Np+1

Sampling from an MCMC kernel of invariant distribution 7,

ZN,,+N

1. Generate X* =Ny +1

n,lin—1 Oém(sx;f_ 1(d$1:n—1)

1,1:m—
i—1
2. Generate X} | ~ q(zn| X, X:L,Lnfl)

n,l:n?

3. Accept the candidate Xﬁhl:n = X:L,lzn with probability :

o =mind1 7\rr’ﬂ(‘)(;:,l:n) q(szljlln'X:;,ln)
Ca(XE X)) Aa(XUTL)

n,l:n n,l:n n,l:n
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SMCMC : Design of the MCMC Kernel

At each time n the target distribution is
N+N,
7\"rn(ll:n) X gn(ynlxn)fn(xn|xn—l) Z (SX;L'L1 lim—1 (dxl:n—l) (4)
m=Np+1 ’

Empirical posterior = the proposal within the MCMC kernel is such that

q(xlznlxi’_ll;n) = Q($n|X:L,_11n, ml:nfl) l](£1:n—1|XTiL,_11:n) (5)
N—_—— —
Discrete Suppor‘t{){m }

n—1,lin—1

N+4Ny
m=Np+1

Sampling from an MCMC kernel of invariant distribution 7,

ZN,,+N

1. Generate X* =Ny +1

n,lin—1 Oém(sx;f_ 1(dxl:n—1)

1,1:m—
i—1
2. Generate X} | ~ q(zn| X, X:L,Lnfl)

n,l:n?

3. Accept the candidate Xﬁhl:n = X:L,lzn with probability :

o =mind1 7\rr’ﬂ(‘)(;:,l:n) q(szljlln'X:;,ln)
Ca(XE X)) Aa(XUTL)

n,l:n n,l:n n,l:n
i—1

g’ﬂ(y’ﬂ|X:L,n)fn(X:L,n|X:L,n71) q(X;:l,_”Ll|X;‘L,1:n7X:L,_11:n71)am
(X | X0, X )a™ gn (Yn | Xioa ) fa (X5 1X 0 )

n,l:n’**n,l:in—1

I
2.
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Massive data context

At each time n — The MCMC kernel requires the computation of the likelihood

i—1

. gn(yTL'X;,n)fn(X:L,n|X:L,n71) Q(X;T’rbl'X:L,lny X;y_llnfl)am
a=min{ 1, " - " " i—1 i—1) yi—1
q(Xn,n|Xn,1:n7 Xn,l:n—l)am gn(yn|X’n,n )f" (X"!" |Xn,n—1)

= Prohibitive for tall dataset, i.e. y,, contains a large number M,, of individual
(independent) data points

My

9n(Wnl X)) = [ [ 9n(wnl X))

k=1

Objective : Adapt recent advances in static MCMC simulation for tall data
to the sequential setting.
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MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups

Receive observations

F—T1T¥772747777] ter
///////
72737777 |_|_|_
///////

Compute filtering
distribution using the
data
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MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups
1. Subsampling-based approaches,

Receive observations

e 1T 777772 Ty
IS mm— i | A VIV ooy
ferezeser] A A e
lameea] C

/////// coy

Compute filtering
distribution using a subset
of the data

CLC
CLL
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MCMC techniques for massive dataset

Techniques for scalable MCMC algorithms can be divided into 2 groups
1. Subsampling-based approaches,
2. Divide-and-Conquer Algorithms

See [Bardenet et al., 2015] for a detailed review.

Receive observations

Compute local filtering Compute local filtering
distribution using a distribution using a

subset of the data —> subset of the data

— 77747777FCCC
— AR A e
— 27747777 CcC
P 2222277 CcC
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Subsampling-based approach

Let us recall the acceptance ratio of the SMCMC :

7 i— m? 1
o =min{ 1, gn(yn|X;; n)f’n(X;:,n|X;:,n—1) (Xn n1|Xn lins Xn lln 1)C¥
a(X X0 X, )a™ g (Yn| X ) fu(Xam | X5 0 1)

n, 1n’ n,lin—1

The state X7, 1., is accepted when (with u ~ Ujg 17)

i—1

Hf:fznl g"(y’ﬂ k|X )f’ﬂ(X;:n|Xnn 1) (X’IZLﬂ‘l'Xn 1n7X;L.7.711n 1)am
‘I(X:L,n|X:L 11n7 Xn,l:nfl)am* Hk 1 gn(yn k|X7ZL nl)f"(X”ZL nl |Xn m— 1)

u <

i—1
Llog ufn(X;:,n|X;:n 1) (X:Ln1|Xn1n7X:7. 11n 1)am
My, Fn (X |1 X ) a(X | X 1, X 1 g )™

n,n—1 n,l:n>
Z [gn Yn, k|Xnn):|

v 2% gy al X

’l/}n(Xn 1:ny X:L_l n) < AMn (X':L,_nla X:L,TL)
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Subsampling-based approach

[Bardenet et al., 2015] develops a (static) confidence MH sampler for using

t
i n\Yn X:LTL
A X ) = 53 log [M]
t k=1 gn(yn,k|X'n,n)

instead of Aas, (X7}, X ) that uses all the data (¢ < M,,)
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Subsampling-based approach

[Bardenet et al., 2015] develops a (static) confidence MH sampler for using

- [gn(yn,le;i,n))]
)

- 1
A: (X:L,’IL17 X;:,n) =7 IOg i—
t ; 9n(Yn, k| Xnn

instead of Aar, (X7}, X ) that uses all the data (t < M,

B By using concentration bounds - for a given § > 0, (c¢(9),t) can be found
such that

P [IAF (X0 Xi) = Mar, (X001 X0l € (0)] > 16

~» sampling ¢ from M,, data points without replacement

ct(0) = 644/ 210g§3/5) + 3Rloi;(3/5) [Empirical Berstein Bound]

with &, : empirical std of the log likelihood ratios.
R = maxi<k<a, 1108 gn(Yn.k| X5 n) — 108 gn (Yn.re| X5
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Subsampling-based approach

[Bardenet et al., 2015] develops a (static) confidence MH sampler for using

t =~ 9n(Yn, k| Xnn

t
: (Y k| X
ALK X)) = 23 log [MLI;]
)

instead of Aar, (X7}, X ) that uses all the data (t < M,

B By using concentration bounds - for a given § > 0, (c¢(9),t) can be found
such that

P [IAF (X0 Xi) = Mar, (X001 X0l € (0)] > 16

~» sampling ¢ from M,, data points without replacement

ct(0) = 644/ 210g§3/5) + 3R10§(3/6) [Empirical Berstein Bound]

with &+ : empirical std of the log likelihood ratios.
R = maxi<k<a, 1108 gn(Yn.k| X5 n) — 108 gn (Yn.re| X5
B Propose an adaptive procedure for t such that the MH acceptance
decision is recovered with probability 1 — §
increase ¢ until the condition
AT (X0 X0 n) = (X 1on, X)) | > ¢e(0) is satisfied

n,l:n
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Subsampling-based approach with control variates

In the empirical Bernstein bound,

ct(0) = 64/ 210g§3/6) + 3R10§(3/6) [Empirical Berstein Bound]

the leading term is &, /v/t
where &, : empirical std of the log likelihood ratios

{logwk_lmt}

gn(yn,k |szl7—n1) T

To reduce this term, [Bardenet et al., 2015] proposes to use proxies as
control variates
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Subsampling-based approach with control variates

Assume you have
Onae(Xons Xon) 108 g (Y| X0 n) — 108 gu (Y| Xon')

then the MH acceptance decision is equivalent to

yn k|Xn n) i— * * i—
M Z |: W — pn’k(Xn’nl,Xn’n)] > 'l/)n(Xn,l:naXn,llzn)
1 A
— —Z@nk X:Lnlvxnn)
k=1

and the leading term of Bernstein's bound now uses the std of

n n X;:n q— *
{IOg g(Lhil) - pn,k(Xn,nly Xn,n)a k= 17 e 7t}
g (Yn k[ X))
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Subsampling-based approach with control variates

Assume you have

ok (Xnn X ) 2108 Gn (Yn k| Xoh 1) — 108 gn (Y k| X))

then the MH acceptance decision is equivalent to

yn k|Xn n) i— * * i—
M Z |: W — pn’k(Xn’nl,Xn’n)] > 'l/)n(Xn,l:naXn,llzn)
1 A
— —Z@nk X:Lnlvxnn)
k=1

and the leading term of Bernstein's bound now uses the std of

n n X;:n 7— *
{IOg M - pn,k(Xn,nly Xn,n)a k= 17 e 7t}
g (Yn k[ X))

Example of proxy ~~ Taylor series of the log-likelihood ratio

B Average of the proxies MLH 224:1 on k(X0 X ) easy to compute
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Subsampling-based approach with control variates

Assume you have

ok (Xnn X ) 2108 Gn (Yn k| Xoh 1) — 108 gn (Y k| X))

then the MH acceptance decision is equivalent to

yn k|Xn n) i— * * i—
M Z |: W — pn’k(Xn’nl,Xn’n)] > 'l/)n(Xn,l:naXn,llzn)
1 A
— —Z@nk X:Lnlvxnn)
k=1

and the leading term of Bernstein's bound now uses the std of

n n X;:n 7— *
{IOg M - pn,k(Xn,nly Xn,n)a k= 17 e 7t}
g (Yn k[ X))

Example of proxy ~~ Taylor series of the log-likelihood ratio

B Average of the proxies MLH 224:"1 on k(X0 X ) easy to compute

nidn X:L n i— * .
® Bound R = maxi<k<m, |log %:Xih)) — on k(X)) X )| obtained
n(Yn, k| Xn,n

from the Taylor-Lagrange inequality
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Divide-and-Conquer based approach

Previous approach : Subsampling ~~ only a subset of all the data is used

Now we adapt (in the sequential setting) a divide-and-conquer approach
based on Expectation-Propagation (EP) [Xu et al., 2014, Gelman et al., 2014]

Receive observations

— 77A777FcC
— VX A e
— 77A4277fcC

Compute local filtering Compute local filtering
distribution using a distribution using a
subset of the data — subset of the data

—] 22232 s
—] 22 2y uus
- s27k 27

Key Idea :
1. Partition the M,, measurements into D (disjoint) subsets
2. Run a filter locally on each subset

Challenge : How to combine results from local computation
~ EP (variational message passing algorithm) [Minka, 2001]
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Divide-and-Conquer - EP SMCMC

Let us recall the true target distribution

D N-+Ny
Tn(Tn) o H 9n(Yn,02.4|Tn) Z fa(@n|Tn—1 = Xpt11im—1)
d=1 m=Np+1

We define a local target distribution for an individual computing node :

D N+Ny
%Z(xn) X Gn (Yn,2a|Tn) H h(zn;ne) Z fa(@nlzn—1 = X7 1 1:n—1)
C;dl m=Np+1

where the distribution h(zy;7.) (e.g. from an exponential family with na-
tural parameters 7).) is an approximation of the likelihood on the c-th node.
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Divide-and-Conquer - EP SMCMC

At the dth note, the local target distribution is :

D N+Ny
fri(xn) X gn(yn,9d|$n) H h(zn;ne) Z Jn(@n|rn_1 = X7 1,1:in— 1)
C;dl m=N,+1

1. Draw samples from the MCMC kernel with invariant distribution 7¢ (2,,)

2. Update the natural parameters (NP), 7q associated to the likelihood used
in this node ~» KL minimization which leads to

Nd = Mp,d — | Nf.d + Zm
i#d

3. These natural parameters are distributed to all D \ d computing nodes.
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Divide-and-Conquer - EP SMCMC

At the dth note, the local target distribution is :

D N+Ny
7\'Jri(xn) X gn(yn,ﬂd|xn) H h(zn;nc) Z Jn(@n|zn-—1 = X350 1,1in— 1)
c;dl m=N,+1

1. Draw samples from the MCMC kernel with invariant distribution 7¢ (2,,)

2. Update the natural parameters (NP), 7q associated to the likelihood used
in this node ~» KL minimization which leads to

Nd = Mp,d — | Nf.d + Zm
i#d
3. These natural parameters are distributed to all D \ d computing nodes.

This procedure is
B performed on all nodes which distribute their NP update to the other ones

B repeated several times.
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Divide-and-Conquer - EP SMCMC

At the dth note, the local target distribution is :

D N+Ny
7\'Jri(wn) X gn(yn,ﬂd|wn) H h(zn;ne) Z Jn(@n|rn_1 = X7 1,1:in— 1)
C;dl m=N,+1

1. Draw samples from the MCMC kernel with invariant distribution 7¢ (2,,)

2. Update the natural parameters (NP), 7q associated to the likelihood used
in this node ~» KL minimization which leads to

Nd = Mp,d — | Nf.d + Zm
i#d

3. These natural parameters are distributed to all D \ d computing nodes.
This procedure is
B performed on all nodes which distribute their NP update to the other ones

B repeated several times.

Finally, the samples from all the local nodes (of the last EP iter.) are kept for
page 27/3PProximating of the posterior distribution.



Numerical Simulations

We compare performances of :
B SMCMC : Sequential MCMC

B AS-SMCMC : Adaptive Subsampling SMCMC
~» 2nd order Taylor series of log lik. as proxy

B EP-SMCMC : Expectation-Propagation SMCMC
~» Multivariate normal distribution for local approx.
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Numerical Simulations

We compare performances of :
B SMCMC : Sequential MCMC

B AS-SMCMC : Adaptive Subsampling SMCMC
~» 2nd order Taylor series of log lik. as proxy

B EP-SMCMC : Expectation-Propagation SMCMC
~» Multivariate normal distribution for local approx.

in two differents models
B linear and Gaussian state-space model,

B Multiple target tracking in clutter.
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Numerical Simulations : Model 1

f (xn|xn 1) N(x’rwan 17Q>

My,
yn k|xn - HN(yn,k;kavR)'
k=1

In(YnlTn) =

||’:|§

Within this model, the filtering distribution is tractable ~~ Kalman filter

Parameters of the different algorithms chosen such that the number of
generated samples is the same.
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Numerical Simulations : Model 1

Table — Algorithm computation time per time step (AS-SMCMC/SMCMC :
N, = 4000 - EP-SMCMC : L =2, D = 4 and N, = 500.

Algorithms M,, = 500 M,, = 5000
Time [s] Computational ~ Time [s] Computational
Gain [%] Gain [%]
SMCMC 114.75 0 1087.93 0
AS-SMCMC 69.54 39.4 274.60 74.76
EP-SMCMC  9.89 91.38 96.40 91.14

= Computational saving with both AS and EP
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Numerical Simulations : Model 1

To analyze the quality of the empirical approx. of the filtering distribution :
~> Study of the Kolmogorov-Smirnov (KS) statistic

KS = sgp (ﬁ(:z:) — G(x)) ,

where

L] 13(:1:) : empirical cumulative density function of the filtering obtained
from the MCMC samples

m G(z) : true filtering cdf from the Kalman filter.
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Numerical Simulations : Model 1

Figure — KS statistics with 500 measurements
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B Quite similar performances for SMCMC and AS-SMCMC (1 — 6 = 90%)

B EP-SMCMC depends on #nodes (D) and #particles per node N,

~~ Favorable scenario for EP-SMCMC since Gaussian is used as approx.
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Numerical Simulations : Model

Figure — KS statistics with 5000 measurements
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Numerical Simulations : MTT

Aim : Detect, track and identify each targets from a sequence of noisy observations.
State-space model :

B Each target follows independently some dynamical model (e.g. near constant
velocity model)
B Observation Model : Poisson point process model [Gilholm and Salmond, 2005]

Assumed a set of sensor measurements y, = {yn,l, ...,yn,Mn} coming from a target
or clutter (false alarm).
The likelihood function of the observations can be expressed as

e—tin Mn
gn(ynlzn) = \ H A(Yn,m)

M, m=1

where pin, = Ac + N, A7 is the expected total number of measurements received at
time t,, and

NT,n

AYn,m) = > A2pa(Yn,m|n k) + Acpo(yn,m)

k=1
with A7pz(.) and Acpc(.) being the Poisson intensity functions of target and clutter
measurements and N, the number of targets at time ;.
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Numerical Simulations : MTT

Figure — Exemple of target’ trajectory and associated measurements

Target Tracks Observations

g

§

|

\

coordinate [m]

x 4% coordinate [m]
H

1500

50
Time

50
Tme

@ Target Birth

M Target Death




Numerical Simulations : MTT

Figure — Root Mean Square Error on the targets’ position
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Good tracking performances but
® some RMSE increase for the EP-SMCMC ~~ Gaussian Approx.
likelihood.
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Conclusion

B Adapt to the sequential setting two recent approaches proposed for static
MCMC with tall dataset

B Interesting computational savings,

B Expectation-Propagation based algo suffers from the choice of parametric
distribution to use to approximate local likelihoods

Ongoing work :

® Study the non uniform sampling with replacement in the Adative
Subsampling approach.
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