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Conditional intensity for a space-time point 

process 𝑁:   

𝜆 𝑡, 𝑥 𝑑𝑡𝑑𝑥 = 𝑁 𝑑𝑡 × 𝑑𝑥 𝐻𝑡  

where 𝐻𝑡 = 𝜎 𝑁 −∞, 𝑡 × 𝐵 , 𝐵 is a Borel 

set.  

Point process & Conditional 

intensity 
A point process 𝑁 is a random measure 

that Pr{𝑁 𝐵 < ∞} = 1 for any regualr 

bounded 𝐵.  



Aftershock sequence 
Temporal cluster 

 

Spatial concentration 

Kobe shock 1995 
(M7.2) 



:

( , , ) ( , ) ( ) ( ) ( , , )
i

i i i i i

i t t

t x y x y m g t t f x x y y m  


    

Space-time ETAS model 
• Time varying seismicity rate (conditional 

intensity or stochastic intensity) 

Contribution from 

background seismicity 

Contribution from 

the i-th event 
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  Pr{event j is from background} 

  Pr{event j is from i} 



Thinning method 

• For each event  j 
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  Pr{event j is from background} 

  Pr{event j is from i} 

  Stochastic declustering: Set event j to be a 

background event or a child of event 1, 2, …, 

according to probabilities     or 

    respectively  

j 1 2 1,, ,...,j j j j   



Stochastic declustering method 

  Algorithm: Generate a uniform random number           

on [0, 1], set    satisfy 
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Estimation problems 

• ETAS model – conditional intensity  

How to estimate 

background 

seismicity?  

How to estimate 

clustering 

parameters?  

(parametric part) (nonparametric part) 
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Estimation problems 

• ETAS model – conditional intensity  

How to estimate 

background 

seismicity? 

How to estimate 

clustering 

parameters? 

How to estimate 

time-free total 

seismicity 

           ? ),( yx

Kernel, spline, 

tessellation, 

histogram, … 

Maximum likelihood 

estimate if background 

seismicity μ is known 
? 



Estimation problems 

• ETAS model – conditional intensity  
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How to estimate 

background 

seismicity? 

How to estimate 

clustering 

parameters? 

How to estimate 

time-free total 

seismicity 

           ? ),( yx

Kernel, spline, 

tessellation, 

histogram, … 

Kernel, spline, tessellation, 

histogram, …, with each event 

weighted by  j



Estimation problems 

• Time varying seismicity rate (conditional 

intensity or stochastic intensity) 

Kernel 
Kernel with each event 

weighted by  
j
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Solution—estimating parameters and 

background rate simultaneously 

Algorithm: 
1. Assume an initial background rate. 

2. Using MLE to estimate parameters in the clustering 
structures. 

3. Using the assumed background and estimated clustering 
parameters to evaluate     . 

4. Using      to get a better background rate. 

5. Update the background rate by this better one. 

6. Repeat Steps 2 to 5 until results converge.   

     
    :  Estimate of probability that event j is of background j

j

j



Uses of stochastic declustering 

• To inverse clustering 

features (Zhuang et al, 

2004) 

 

• Empirical functions 

(histograms) of 

weighted samples 

– ij : i triggers ij  

children, not 1 child 

– i:  we get i 

background events, 

not 1 background 

event 

 



 
Stochastic reconstruction:  inverting 
clustering features 

• Empirical functions 
(histograms) of 
weighted samples 

– ij : i triggers ij  children, 
not 1 child 

– i:  we get i background 
events, not 1 
background event 

 

Empirical p.d.f. for offspring 
locations 
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:, ijrr Standardized distance  

between a parent and  

its direct offspring. 

   

Example 

Sample weight 



Results of location distributions for JMA earthquake catalog 
Model 1:  a short range decay (2-D gaussian => Rayleigh)   
Model 2:  a long range decay (inverse power => Cr(1+r2)-q) 

Theoretic 

Reconstructed 



• Algorithm  

• 1. Assuming some initial guess of model 

formation, obtain     and 

• 2. Estimate background rate and each 

component in the clustering part by using    and 

       . 

• 3. Update      and    , and back to step 2 until 

convergence is reached.  

(Zhuang, 2006, JRSSB; Marsan and Lenglin, 2008)  

 

Non-parametric estimation of both background 

rate and clustering structures 

j ij

j ij

j
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Burglary data in Los Angeles 
(MOHLER et al, 2008, JASA) 

• Conditional intensity or stochastic intensity 

• Data by the Los Angeles Police Department  

     5376 reported residential burglaries in an 18 km by 18 km region of 

the San Fernando Valley in Los Angeles occurring during the years 

2004 and 2005.  
        Each burglary is associated with a reported time window over which it could have occurred, often a few hour span 

(for instance, the time span over which a victim was at work), and we define the time of burglary to be the midpoint of 

each burglary window. 



Burglary data in Los Angeles (MOHLER et al, 2008, JASA) 

• Conditional intensity or stochastic intensity 
Spatial 

offspring

/parent 

distance 

Space-time 

offspring/parent distance 

t-marginal of g  

x-marginal of g  



Estimating long-term 

background trend, periodicity, 

and clustering effect 

Application to Robbery related violence in  

Castellon, Spain, 2013-2015 



Dataset 
Robbery 

related 

violence in  

Castellon, 

Spain, 2012-

2013 



Model 

𝑡 (day): time              (𝑥, 𝑦) (km): location 

 

Background terms:  all normalized to have average 1.  

𝜇𝑡 𝑡 :  trend           𝜇𝑑 𝑡 :  daily periodicity         𝜇𝑤(𝑡): weekly periodicity 

𝜇𝑏(𝑥, 𝑦): spatial inhomogeneity of background  

 

Triggering terms:  both normalized to be pdf 

𝑔 𝑡 : temporal triggering response 

𝑓 𝑥, 𝑦 : spatial triggering response.  

 

𝜇0 and 𝐴:  constants, relaxing coeficients 

𝝀 𝒕, 𝒙, 𝒚 = 𝝁𝟎 𝝁𝒕 𝒕  𝝁𝒅 𝒕  𝝁𝒘 𝒕  𝝁𝒃 𝒙, 𝒚  
                  +𝑨 𝒈 𝒕 − 𝒕𝒊  𝒇 𝒙 − 𝒙𝒊, 𝒚 − 𝒚𝒊𝒊:𝒕𝒊<𝒕   

 



Stochastic reconstruction 
              

𝒈 𝒕 ∝  𝝆𝒊𝒋 𝑰 𝒕𝒋 − 𝒕𝒊 ∈ 𝒕 − 𝜟, 𝒕 + 𝜟

𝒊𝒋

,

                                                                                        

𝒇 𝒙, 𝒚 ∝  𝝆𝒊𝒋 𝑰 𝒙𝒋 − 𝒙𝒊 ∈ 𝒙 − 𝚫𝒙, 𝒙 + 𝜟𝒙 𝑰 𝒚𝒋 − 𝒚𝒊 ∈ 𝒚 − 𝚫𝒚, 𝒙 + 𝜟𝒚

𝒊𝒋

,  

 

𝝆𝒊𝒋 =
𝑨𝒈 𝒕𝒋 − 𝒕𝒊 𝒉 𝒙𝒋 − 𝒙𝒊, 𝒚𝒋 − 𝒚𝒊

𝝀 𝒕𝒋, 𝒙𝒋, 𝒚𝒋

,  𝐟𝐨𝐫 𝒋 < 𝒊                                                      

 

We use kernel functions instead of simple histogram and correct the edge effects.  



Stochastic reconstruction 

𝝁 𝒕 𝒕 ∝  𝒘𝒊
𝒕
 𝑰 𝒕𝒊 ∈ 𝒕 − 𝚫, 𝒕 + 𝚫

𝒊

,                            𝒘𝒊
𝒕

=
𝝁𝒕 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
     

𝝁 𝒅 𝒕 ∝  𝒘𝒊
𝒅

 𝑰 𝒕𝒊 − 𝒕𝒊 ∈ 𝒕 − 𝜟, 𝒕 + 𝜟

𝒊

,          𝒘𝒊
𝒅

=
𝝁𝒅 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
        

 

𝝁 𝒘 𝒕 ∝  𝒘𝒊
𝒘

 𝑰 𝒕𝒊 − 𝟏𝟒 ×
𝒕𝒊
𝟏𝟒

∈ 𝒕 − 𝜟, 𝒕 + 𝜟

𝒊

         𝒘𝒊
𝒘

=
𝝁𝒘 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
 

 

𝝁 𝒃 𝒙, 𝒚 ∝  𝝋𝒊𝑰 𝒙𝒊 ∈ 𝒙 − 𝚫𝒙, 𝒙 + 𝜟𝒙 𝑰 𝒚𝒊 ∈ 𝒚 − 𝚫𝒚, 𝒙 + 𝜟𝒚

𝒊

 

   𝝋𝒊 =
𝝁𝟎 𝝁𝒕 𝒕𝒊 𝝁𝒅 𝒕𝒊 𝝁𝒘 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
              

 



Stochastic reconstruction 

𝝁 𝒕 𝒕 ∝  𝒘𝒊
𝒕
 𝑰 𝒕𝒊 ∈ 𝒕 − 𝚫, 𝒕 + 𝚫

𝒊

,                            𝒘𝒊
𝒕

=
𝝁𝒕 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
     

 

Given a spatiotemporal point process N equipped with a 

conditional intensity 𝜆(𝑡, 𝑥), if ℎ(𝑡, 𝑥) is a predictable 

marked process, then for any fixed interval T and region 

S, 

 

 

providing that h is nonnegetive or either sides of the 

above exists.  

𝐸  ℎ 𝑡𝑖 , 𝑥𝑖

𝑡𝑖,𝑥𝑖 ∈𝑁∩𝑇×S

= 𝐸   ℎ 𝑡, 𝑥 𝜆 𝑡, 𝑥 𝑑𝑡𝑑𝑥
𝑇𝑆

 



Stochastic reconstruction 

𝝁 𝒕 𝒕 ∝  𝒘𝒊
𝒕
 𝑰 𝒕𝒊 ∈ 𝒕 − 𝚫, 𝒕 + 𝚫

𝒊

,                            𝒘𝒊
𝒕

=
𝝁𝒕 𝒕𝒊  𝝁𝒃 𝒙𝒊, 𝒚𝒊

𝝀 𝒕𝒊, 𝒙𝒊, 𝒚𝒊
     

 

ℎ 𝑡, 𝑥, 𝑦 =
𝜇𝑡 𝑡 𝜇𝑏 𝑥, 𝑦

𝜆(𝑡, 𝑥, 𝑦)
 

𝐸  ℎ 𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖

𝑡𝑖,𝑥𝑖,𝑦𝑖 ∈𝑁∩𝑇×S

= 𝐸   ℎ 𝑡, 𝑥 𝜆 𝑡, 𝑥 𝑑𝑡𝑑𝑥𝑑𝑦
𝑇𝑆

 

                                                   = 𝐸   𝜇𝑡 𝑡 𝜇 𝑥, 𝑦 𝑑𝑥𝑑𝑦𝑑𝑡
𝑆𝑇

 

                                            =  𝜇𝑡 𝑡  𝑑𝑡 
𝑇

 𝜇𝑏 𝑥, 𝑦 𝑑𝑥𝑑𝑦
𝑆

 

                                          ∝ 𝜇𝑡 𝑡  Δ 

 

 

 

                                        

𝑇 = 𝑡 − Δ, 𝑡 + 𝛥 , 𝑆 = whohle area 



Estimation of relaxing coefficients  

Update 𝜇0 and 𝐴 through maximizing the likelihood function  

log 𝐿 =  log 𝜆 𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖

𝑛

𝑖=1

−   𝜆 𝑠, 𝑢, 𝑣  𝑑𝑢 𝑑𝑣 𝑑𝑠
𝑆

𝑇

0

 

which reduces to  

𝐴 𝑘+1 = 
𝑛 −  𝜑𝑖

𝑘
 　𝑛

𝑖=1

𝐺
 

𝜇0
𝑘+1

=
𝑛 − 𝐴 𝑘+1 𝐺

𝑈
 

𝑈 =   𝜇𝑡 𝑡 𝜇𝑑 𝑡 𝜇𝑤 𝑡 𝜇𝑏 𝑥, 𝑦 𝑑𝑥𝑑𝑦𝑑𝑡
𝑆

  
𝑇

0

 

𝐺 =    𝑔 𝑡 − 𝑡𝑖 𝑓 𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖 𝑑𝑥𝑑𝑦𝑑𝑡
𝑆

  
𝑇

0

𝑛

𝑖

 

𝜑𝑖
𝑘

 =
𝜇0

𝑘
 𝜇𝑡 𝑡𝑖  𝜇𝑑 𝑡𝑖 𝜇𝑤 𝑡𝑖 𝜇𝑏 𝑥𝑖 , 𝑦𝑖

𝜇0
𝑘

 𝜇𝑡 𝑡𝑖  𝜇𝑑 𝑡𝑖 𝜇𝑤 𝑡𝑖 𝜇𝑏 𝑥𝑖 , 𝑦𝑖 + 𝐴 𝑘   𝑔(𝑡𝑗 − 𝑡𝑖) ℎ(𝑥𝑗 − 𝑥𝑖 , 𝑦𝑗 − 𝑦𝑖)𝑗: 𝑡𝑗<𝑡𝑖

 



Results 

𝜇0 = 0.791 



Results 

𝐴 = 0.029 



Conclusions 
 
1. Stochastic reconstruction helps visualizing the 

structure of family trees in the observations of a 
branching process together with uncertainties. 
 

2. Based on the theory of residual analysis, 
stochastic reconstruction provides us a non-
parametric method for estimating each 
individual characteristic in a wide range of 
branching models.  
 

3. New ingredients are added in the analysis: (a) 
periodicity in background and (b) relaxation 
coefficients.  
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Thank you  
for listening. 

 


