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General context

In many applications ; interest is in learning about
unknowns from observed (noisy) data

Unknowns X

Observed data Y

g(·)
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Observed data Yn−1 Yn
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General context

In many applications ; interest is in learning about
unknowns from observed (noisy) data

Unknowns · · · Xn−1 Xn Xn+1 · · ·

Observed data Yn−1 Yn Yn+1

gn(·)gn−1(·) gn+1(·)

fn(·) fn+1(·)

F. Septier STM2018: 27-28 Feb. 2018 Revisit of the resampling mechanism used in importance sampling methods 2/35

2/35



General context: Bayesian inference

Bayesian ⇒ Instead of just a pointwise estimation of the unknowns

x̂1:n

we are interested in its posterior probability density function (pdf)

πn(x1:n) ≡ p(x1:n|y1:n) ∝ p(x1:n)p(y1:n|x1:n)

thus characterizing all the uncertainty in the model under study.
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Bayesian ⇒ Instead of just a pointwise estimation of the unknowns

x̂1:n

we are interested in its posterior probability density function (pdf)

πn(x1:n) ≡ p(x1:n|y1:n) ∝ p(x1:n)p(y1:n|x1:n)

thus characterizing all the uncertainty in the model under study.

Unfortunately, in most cases, this posterior pdf is intractable

⇒ all quantities of interest such as

Θn = Eπn [ϕ(Xn)] =

∫
ϕ(xn)πn(xn)dxn

cannot be computed and must be approximated

Sequential Monte-Carlo algorithms
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Importance Sampling
Let us define the target distribution of interest which is known up to a
normalizing constant Z :

π(x) =
γ(x)

Z

Importance Sampling (IS) identity

For any distribution q such that supp(π) ⊂ supp(q)

Eπ[h(X)] =

∫
h(x)

π(x)

q(x)
q(x)dx

q(·) is called importance (or proposal / instrumental) distribution

q(·) can be chosen arbitrarily, in particular easy to sample from.
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Let us define the target distribution of interest which is known up to a
normalizing constant Z :

π(x) =
γ(x)

Z

Importance Sampling (IS) identity

For any distribution q such that supp(π) ⊂ supp(q)

Eπ[h(X)] =

∫
h(x)

π(x)

q(x)
q(x)dx

=

∫
h(x)w(x)q(x)dx = Eq[h(X)w(x)]

q(·) is called importance (or proposal / instrumental) distribution
w(x) = π(x)/q(x) is called importance weight.

q(·) can be chosen arbitrarily, in particular easy to sample from.
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Importance Sampling
Target distribution of interest: π(x) = γ(x)

Z

Importance Sampling (IS) identity

For any distribution q such that supp(π) ⊂ supp(q)

Eπ[h(X)] =

∫
h(x)w(x)q(x)dx with w(x) = π(x)/q(x)

• Draw independently Np samples from q(·)
for j = 1, ... , Np : X j iid∼ q(·)

• Plugging this expression in the IS identity, we obtain [by the Law of Large
numbers]:

1

N

N∑

i=1

w(X i )h(X i)

a.s.
N → ∞−→ Eπ[h(X)]

or self-normalized version (used when Z is unknown)

N∑

i=1

w(X i )∑N

j=1
w(X j )

h(X i)

a.s.
N → ∞−→ Eπ[h(X)]

with w(X i ) =
γ(X i)

q(X i)
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General SMC methodology

Aim: Approximate a sequence of target pdf of increasing dimension

{
πn(x1:n)

}
n≥1

i.e. the dimension of its support forms an increasing sequence with n.

• In practice: πn only known up to a normalizing constant,

πn(x1:n) =
γn(x1:n)

Zn
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General SMC methodology

Aim: Approximate a sequence of target pdf of increasing dimension

{
πn(x1:n)

}
n≥1

i.e. the dimension of its support forms an increasing sequence with n.

• In practice: πn only known up to a normalizing constant,

πn(x1:n) =
γn(x1:n)

Zn

• Originally developed for filtering in hidden Markov model (HMM) with

γn(x1:n) = p(x1:n, y1:n)

BUT can be used for other sequence of target pdf.
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How does SMC work?

• Sequence of importance sampling (IS) steps, where at each step n
◦ the target distribution is πn(x1:n) = γn(x1:n)/Zn

◦ the importance distribution is qn(x1:n) = q1(x1)
∏n

k=2
qk (xk |x1:k−1)
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• Sequence of importance sampling (IS) steps, where at each step n
◦ the target distribution is πn(x1:n) = γn(x1:n)/Zn

◦ the importance distribution is qn(x1:n) = q1(x1)
∏n

k=2
qk (xk |x1:k−1)

Procedure at time n and ∀j = 1, ... , N [Gordon et al, 1993]

• Sampling - Propagate each trajectory: X̃ j
n ∼ qn(xn|X j

1:n−1)
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How does SMC work?

• Sequence of importance sampling (IS) steps, where at each step n
◦ the target distribution is πn(x1:n) = γn(x1:n)/Zn

◦ the importance distribution is qn(x1:n) = q1(x1)
∏n

k=2
qk (xk |x1:k−1)

Procedure at time n and ∀j = 1, ... , N [Gordon et al, 1993]

• Sampling - Propagate each trajectory: X̃ j
n ∼ qn(xn|X j

1:n−1)

• Weighting - Compute each importance weight:

W j
n ∝ W (X j

1:n−1, X̃ j
n) =

γn(X j
1:n−1, X̃ j

n)

qn(X j
1:n−1, X̃ j

n)
=

γn−1(X j
1:n−1)

qn−1(X j
1:n−1)

︸ ︷︷ ︸
W (X j

1:n−1)

Previous weight

γn(X j
1:n−1, X̃ j

n)

γn−1(X j
1:n−1)qn(X̃ j

n|X j
1:n−1)

︸ ︷︷ ︸
w̃(X j

1:n−1, X̃ j
n)

Incremental weight

⇒ for filtering problem in HMM with γn(x1:n) = p(x1:n, y1:n), we simply have

w̃(X j
1:n−1, X̃ j

n) =
gn(yn|X̃ j

n)fn(X̃ j
n|X j

n−1)

qn(X̃ j
n|X j

1:n−1)
.
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W (X j

1:n−1)

Previous weight

γn(X j
1:n−1, X̃ j

n)

γn−1(X j
1:n−1)qn(X̃ j

n|X j
1:n−1)

︸ ︷︷ ︸
w̃(X j

1:n−1, X̃ j
n)

Incremental weight

⇒ Empirical approximation via a random measure {W j
n , X̃ j

n}N
j=1

πN
n (xn) =

∑N
j=1 W j

nδ
X̃ j

n
(dxn)

πn(xn)

∑N
j=1 W j

n = 1

xn
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How does SMC work?

• Sequence of importance sampling (IS) steps, where at each step n
◦ the target distribution is πn(x1:n) = γn(x1:n)/Zn

◦ the importance distribution is qn(x1:n) = q1(x1)
∏n

k=2
qk (xk |x1:k−1)

Procedure at time n and ∀j = 1, ... , N [Gordon et al, 1993]

• Sampling - Propagate each trajectory: X̃ j
n ∼ qn(xn|X j

1:n−1)

• Weighting - Compute each importance weight:

W j
n ∝ W (X j

1:n−1, X̃ j
n) = W (X j

1:n−1)w̃(X j
1:n−1, X̃ j

n)

Θn = Eπn [ϕ(Xn)] ⇒ Θ̂SIS,N
n =

∑N
j=1 W j

nϕ(X̃ j
n)
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Sequential Importance Sampling

Sequential Importance Sampling Algorithm

1: At time 1: for j = 1, ... , Np, sample X j
1 ∼ q1(x1) and set w j

1 =
γ1(X

j
1
)

q1(X
j
1
)

2: for time k > 1 do
3: for j = 1, ... , N do

4: Sample X̃ j
n ∼ qn(·|X j

n−1)

5: Compute Importance weight W j
n ∝ W j

n−1

γn(X
j
1:n−1

,̃X
j
n)

γn−1(X
j
1:n−1

)qn(X̃
j
n|X

j
1:n−1

)

6: Set X j
n = X̃ j

n

7: end for
8: Output Approximations :

Target pdf: π̂n(x1:n) =
∑N

i=1
W j

nδX i
1:n

(dx1:n)

Θn = Eπn [ϕ(Xn)] ≈ Θ̂
SIS,N
n =

∑N

j=1
W j

nϕ(X̃ j
n)

Normalizing constant: Ẑn =
∑N

j=1
W i

n

9: end for
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Sequential Importance Sampling

One step of the SIS algorithm with just seven particles.
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SIS : Choice of the proposal distribution

The so-called “optimal” choice of qn(·) (for filtering in HMM) that minimizes the
variance of the importance weights, consists in setting

qn(xn|xn−1) =
gn(yn|xn)fn(xn|xn−1)∫
gn(yn|xn)fn(xn|xn−1)dxn

Consequently the weights does not depend on current state value but only on the
previous one (xn−1), i.e. :

W j
n ∝ W j

n−1

∫
gn(yn|xn)fn(xn|x j

n−1)dxn
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SIS : Choice of the proposal distribution

The so-called “optimal” choice of qn(·) (for filtering in HMM) that minimizes the
variance of the importance weights, consists in setting

qn(xn|xn−1) =
gn(yn|xn)fn(xn|xn−1)∫
gn(yn|xn)fn(xn|xn−1)dxn

Consequently the weights does not depend on current state value but only on the
previous one (xn−1), i.e. :

W j
n ∝ W j

n−1

∫
gn(yn|xn)fn(xn|x j

n−1)dxn

This is however usually not feasible and common choices include :

• the prior qn(xn|xn−1) = fn(xn|xn−1) (and then W j
n ∝ W j

n−1gn(yn|X j
n)),

• approximations (sometimes heuristic) to the optimal one (moment matching,
use of EKF or UKF, . . . ),

• tuning parameters of qn(·) so as to maximize some criterions: effective sample
size, entropy, . . .
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SIS : Choice of the proposal distribution

SIS with the of the prior (left) and the optimal (right) distribution as
proposal.

⇒ Choice of this proposal distribution is an important step when one want
to design an efficient SIS algorithm.
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SIS: Weight Degeneracy

Histograms of the base 10 logarithm of the normalized weights for t = 1 (top), t = 50

(middle) and t = 100 (bottom) for a simple stochastic volatility model.

The algorithm performance collapse as time (n) increases... After a few time steps,
only a very small number of particles have non negligible weigths !!
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SIS: Resampling Step
Problem: After a few time steps, only a very small number of particles have non
negligible weigths !

Solution: Replicate particles with large weights and eliminate those with small
weights to prevent the problems we saw with SIS (at the price of a, usually
moderate, increase in variance).

→֒ Use random resampling techniques by taking importance weights:
multinomial, residual, ...

⇒ Sequential Importance Resampling
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Sequential Importance Sampling Resampling

SIS (left) versus SIR (right)

The resampling step is necessary to ensure the long-term stability of the
filtering algorithm.

→֒ Maintain a reasonable number of contributing particles at all times.
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Sequential Importance Sampling Resampling

SIS (left) versus SIR (right)

The resampling step is necessary to ensure the long-term stability of the
filtering algorithm.

→֒ Maintain a reasonable number of contributing particles at all times.

BUT it reduces the number of distinct samples ⇒ sample impoverishment

F. Septier STM2018: 27-28 Feb. 2018 Revisit of the resampling mechanism used in importance sampling methods 16/35

16/35



SMC technique: summary

• Sequence of importance sampling (IS) steps, where at each step n
◦ the target distribution is πn(x1:n) = γn(x1:n)/Zn

◦ the importance distribution is qn(x1:n) = q1(x1)
∏n

k=2
qk (xk |x1:k−1)

Procedure at time n and ∀j = 1, ... , N [Gordon et al, 1993]

• Sampling - Propagate each trajectory: X̃ j
n ∼ qn(xn|X j

1:n−1)

• Weighting - Compute each importance weight:

W j
n ∝ W (X j

1:n−1, X̃ j
n) = W (X j

1:n−1)w̃(X j
1:n−1, X̃ j

n)

Θn = Eπn [ϕ(Xn)] ⇒ Θ̂SIS,N
n =

∑N
j=1 W j

kϕ(X̃ j
n)

• Resampling (optional but necessary to avoid weight degeneracy):

Sample N times from the random measure {W j
n , X j

1:n−1, X̃ j
n}N

j=1 to obtain

{W j
n = 1

N
, X j

1:n}N
j=1

Θ̂SIR,N
n = 1

N

∑N
j=1 ϕ(X j

n)
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Effect of the (optional) multinomial resampling step:

Fights against weight degeneracy but no local benefits:

• dependency among the resampled points ⇒ support shrinkage

• var(Θ̂SIR,N
n ) ≥ var(Θ̂SIS,N

n )
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Effect of the (optional) multinomial resampling step:

Fights against weight degeneracy but no local benefits:

• dependency among the resampled points ⇒ support shrinkage

• var(Θ̂SIR,N
n ) ≥ var(Θ̂SIS,N

n )

Key idea: Ph.D thesis of R. Lamberti - [Lamberti et al, IEEE TSP 2017]

Revisit the complete scheme
(sampling, weighting and resampling)

↓
Benefits of the resampling mechanism

without local impoverishment of the resulting MC approx.
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Characterization of sampling / weighting / resampling step

Proposition 1

Given {X i
0:n−1}N

i=1, the resampled particles X j
n are identically distributed

(but dependent) according to a pdf q̃N
n (x), with

q̃N
n (x) =

N∑

i=1

qi
n(x)hi

n(x) (1)

where

qi
n(x) = q(x |X i

0:n−1)

hi
n(x) =

∫ ∫ π
i
n(x)

qi
n(x)

π
i
n(x)

qi
n(x) +

∑
l 6=i

π
l
n(x l )

ql
n(x l )

∏

l 6=i

ql
n(x l)dx l

(2)

This dependency results in support shrinkage since, by construction, an
intermediate sample can be resampled several times.
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Characterization of sampling / weighting / resampling step

Proposition 1

Given {X i
0:n−1}N

i=1, the resampled particles X j
n are identically distributed

(but dependent) according to a pdf q̃N
n (x), with

q̃N
n (x) =

N∑

i=1

qi
n(x)hi

n(x) (1)

where

qi
n(x) = q(x |X i

0:n−1)

hi
n(x) =

∫ ∫ π
i
n(x)

qi
n(x)

π
i
n(x)

qi
n(x) +

∑
l 6=i

π
l
n(x l )

ql
n(x l )

∏

l 6=i

ql
n(x l)dx l

(2)

Proposition ⇒ Scheme to produce independent samples from q̃N
n (x)
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Proposed independent resampling

Method to sample N independent particles from q̃N
n (x)

⇒ weighting & resampling as compound importance distrib.
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Proposed independent resampling

Method to sample N independent particles from q̃N
n (x)

⇒ weighting & resampling as compound importance distrib.

Example with N = 8: we obtain 8 particles drawn i.i.d. from q̃8
n(x)
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Proposed independent resampling

Method to sample N independent particles from q̃N
n (x)

⇒ weighting & resampling as compound importance distrib.

• Sampling N independent particles from q̃N
n (x)

• Weighting - 2 solutions:

1. Equal weights: W i
n = 1/N - what is actually done after classical resampling

⇒ Algorithm I-SIR
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Proposed independent resampling

Method to sample N independent particles from q̃N
n (x)

⇒ weighting & resampling as compound importance distrib.

• Sampling N independent particles from q̃N
n (x)

• Weighting - 2 solutions:

1. Equal weights: W i
n = 1/N - what is actually done after classical resampling

⇒ Algorithm I-SIR

2. IS principle: W i
n ∝ πi

n(X i
n)/q̃N

n (X i
n)

⇒ Algorithm I-SIR-w

However q̃N
n (X i

n) =
∑N

i=1
qi

n(x)hi
n(x) must be approximated

since hi
n(x) =

∫ ∫ π
i
n(x)

qi
n(x)

π
i
n(x)

qi
n(x)

+
∑

l 6=i

π
l
n(xl )

ql
n(xl )

∏
l 6=i

ql
n(x l )dx l cannot be evaluated

⇒ hi
n approximated by the N2 samples
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Proposed independent resampling

Contributions 7→ Theoretical study of Θ̂I−SIR,N
n• Mean/Variance for finite N (number of samples)

E(Θ̂I−SIR,N
n |{X i

0:n−1}N
i=1) = E(Θ̂SIR,N

n |{X i
0:n−1}N

i=1) = E(Θ̂SIS,N
n |{X i

0:n−1}N
i=1),
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n |{X i

0:n−1}N
i=1) = E(Θ̂SIR,N

n |{X i
0:n−1}N

i=1) = E(Θ̂SIS,N
n |{X i

0:n−1}N
i=1),

var(Θ̂I−SIR,N
n |{X i

0:n−1}N
i=1) = var(Θ̂SIR,N

n |{X i
0:n−1}N

i=1)−N − 1

N
var(Θ̂SIS,N

n |{X i
0:n−1}N

i=1).

◦ The proposed algorithm (Θ̂I−SIR
n ) would outperform the classical SIR estimate

◦ Gain depends on var(Θ̂SIS,N
n |{X i

0:n−1}N
i=1)
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Proposed independent resampling

Contributions 7→ Theoretical study of Θ̂I−SIR,N
n

• CLT for a single step

√
N(Θ̂I−SIR,N − Θ)

D→ N


0, varπ(ϕ(x))︸ ︷︷ ︸

σ
2,I−SIR

∞ (q)


 .

for comparison:

σ2,SIS

∞ (q) = Eq

(
π2(x)

q2(x)
(ϕ(x) − Θ)2

)
,

σ2,SIR

∞ (q) = varπ(ϕ(x)) + Eq

(
π2(x)

q2(x)
(ϕ(x) − Θ)2

)

◦ Asymp. variance: σ2,I−SIR
∞ (q) ≤ σ2,SIR

∞ (q)

◦ σ2,I−SIR
∞ (q) no longer depends on the proposal distribution q
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for comparison:
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∞ (q) = Eq

(
π2(x)

q2(x)
(ϕ(x) − Θ)2

)
,

σ2,SIR

∞ (q) = varπ(ϕ(x)) + Eq

(
π2(x)

q2(x)
(ϕ(x) − Θ)2

)

◦ Asymp. variance: σ2,I−SIR
∞ (q) ≤ σ2,SIR

∞ (q)

◦ σ2,I−SIR
∞ (q) no longer depends on the proposal distribution q

◦ Difficult to compare σ2,I−SIR
∞ (q) and σ2,SIS

∞ (q)
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Numerical simulations - Tracking

• State of interest xn = [px ,n, ṗx ,n, py ,n, ṗy ,n]T position and velocity of a target

• Tracking scenario with range-bearing measurements ⇒ likelihood pdf:

gn(yn|xn) = N
(

yn;

[√
p2

x ,n + p2
y ,n

arctan
py,n

px,n

]
, R

)
with R =

(
σ2

ρ 0
0 σ2

θ

)
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• Tracking scenario with range-bearing measurements ⇒ likelihood pdf:

gn(yn|xn) = N
(

yn;

[√
p2

x ,n + p2
y ,n

arctan
py,n

px,n

]
, R

)
with R =

(
σ2

ρ 0
0 σ2

θ

)

• Prior knowledge on the dynamics of the unknown state:

Near Constant Velocity (NCV) model

fn(xn|xn−1) = N (xn; Fxn−1, Q)

with

F =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 and Q = σ2

Q




1
3

1
2

0 0
1
2

1 0 0
0 0 1

3
1
2

0 0 1
2

1



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Numerical simulations - Tracking

Target tracking scenario: range-bearing measurements (σQ =
√

10, σρ = 0.05, σθ = π
3600

)

Comparison with other SMC algorithms in which the number of particles is
chosen so that they have the same computational cost

M (number of particles of i.i.d. PF)

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

Island PF estimate (5 Islands, Θ̂
IPF,M

2+M
2

k )

SIS estimate (Θ̂
SIS,M

2+M
2

k )

SIR estimate with residual resampling (Θ̂
SIRR,M

2+M
2

k )

I-SIR estimate with reweighting (Θ̂I−SIR−w,M
k )

I-SIR estimate with uniform weights (Θ̂I−SIR,M
k )

For RMSE=2.7
NI−SIR = 50

vs
NSIS = 5050
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Proposed independent resampling

Summary of the proposed I-SIR

• No support degeneracy: better particle diversity for the next iteration

• Gain in terms of variance of the resulting estimator
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• N2 sampling & weighting steps: higher computational cost than the classical
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• No support degeneracy: better particle diversity for the next iteration

• Gain in terms of variance of the resulting estimator

but

• N2 sampling & weighting steps: higher computational cost than the classical
PF if NSIS = NI−SIR .

However

◦ Resampling is not necessarily needed at each iteration
◦ Independent resampling can be parallelized
◦ In some cases [as in before], performs better even when N2

I−SIR + NI−SIR = 2NSIS
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Proposed independent resampling

Summary of the proposed I-SIR

• No support degeneracy: better particle diversity for the next iteration

• Gain in terms of variance of the resulting estimator

but

• N2 sampling & weighting steps: higher computational cost than the classical
PF if NSIS = NI−SIR .

However

◦ Resampling is not necessarily needed at each iteration
◦ Independent resampling can be parallelized
◦ In some cases [as in before], performs better even when N2

I−SIR + NI−SIR = 2NSIS

Can we propose a general framework that will include classical and
independent as a special case ?
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Classical vs Independent

Classical
SIR

Independent
I-SIR
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Classical vs Independent

Classical
SIR

Independent
I-SIR

Idea 7→ Regenerate only 0 ≤ k ≤ N = 8 samples per iterations
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The semi-independent algorithm

Independent
I-SIR

Semi-Independent
SR

Here - k = 3 uniformly chosen samples are redrawn from the previous population
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The semi-independent algorithm

Independent
I-SIR

Semi-Independent
SR

Remark: Not anymore parallelized when 0 < k < N !
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The semi-independent algorithm

Semi-Independent
SR

Semi-Independent
NSSR

NSSR is a fully parallelized version of this semi-independent resampling
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Semi-independent algorithm - Theoretical analysis

• Generalization of classical SIR and the previous independent I-SIR

◦ When k = 0 regenerated samples ⇒ SR=NSSR=SIR
◦ When k = N regenerated samples ⇒ SR=NSSR=I-SIR
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• Generalization of classical SIR and the previous independent I-SIR

◦ When k = 0 regenerated samples ⇒ SR=NSSR=SIR
◦ When k = N regenerated samples ⇒ SR=NSSR=I-SIR

• Statistical properties: Given the previous set of particles {X i
0:n−1}N

i=1, for all k ,
0 ≤ k ≤ N, we have:

E(Θ̂NSSR,N,k
t ) = E(Θ̂SR,N,k

t ) = E(Θ̂I−SIR,N
t ) = E(Θ̂SIR,N

t )

Each sample X i
n are marginally drawn from the same distribution q̃N

n (x)
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Numerical simulations - Tracking
Target tracking scenario: range-bearing measurements (σQ =

√
10, σρ = 0.1, σθ = π

1800
)

k (number of renewed particles in semi-independent resampling)

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

Bootstrap Sequential Importance Resampling (SIR)
PF with NSSR
PF with SR
PF with i.i.d. resampling

• Improvement when k increases

• note that Θ̂
SR,N,k
t (resp. Θ̂

NSSR,N
t ) has almost the same performance as Θ̂

I−SIR,N
t

when k ≥ N/2 (resp. k ≥ 4N/5)
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Numerical simulations - Tracking
Target tracking scenario: range-bearing measurements (σQ =

√
10)

Comparison with other algorithms, each having the same computational cost

Standard deviations (σρ,σθ) of the measured range and bearing

R
M
S
E

(0,0) (0.05, π
3600 ) (0.1, π

1800 ) (0.15, π
1200 ) (0.2, π

900 ) (0.25, π
720 ) (0.3, π

600 )

2.8

3

3.2

3.4

3.6

3.8

4

SIR with resample-move
PF with i.i.d. resampling, N = 72 final particles

PF with NSSR, k = 4N
5

PF with SR, k = N
2

Bootstrap SIR with N + (N−1)k
2

final particles

• Significant gain for informative models , i.e. small values for (σρ, σθ)
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Conclusion and Perspectives

Conclusion

• Revisit of sampling/resampling as a compound IS distribution

◦ Proposition of a general technique to draw (semi-)independent samples

◦ Theoretical analysis showing the benefit of such an approach

◦ At equivalent cost, the proposed approach outperforms the existing techniques in
highly informative/high-dimensional models
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Conclusion

• Revisit of sampling/resampling as a compound IS distribution

◦ Proposition of a general technique to draw (semi-)independent samples

◦ Theoretical analysis showing the benefit of such an approach

◦ At equivalent cost, the proposed approach outperforms the existing techniques in
highly informative/high-dimensional models

Perspectives

• Optimization of k (# regenerated samples): trade-off performance & cost

• Non-uniform selection of samples to regenerate
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