# Revisit of the resampling mechanism used in importance sampling methods

François Septier

work with R. Lamberti, Y. Petetin and F. Desbouvries

STM2018 at ISM 28th February 2018



### Outline

#### On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

Revisit of the resampling mechanism Introduction Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion

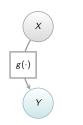


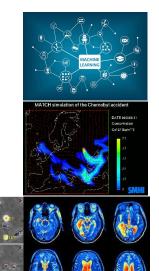
#### General context

In many applications  $\sim$  interest is in learning about unknowns from observed (noisy) data

Observed data

Unknowns



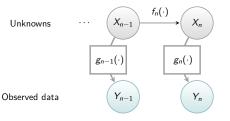


$$^{2}/_{3}$$

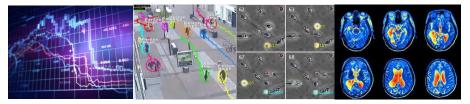
#### General context

In many applications  $\sim$  interest is in learning about unknowns from observed (noisy) data

Unknowns

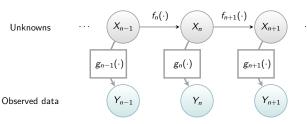






### General context

In many applications  $\rightsquigarrow$  interest is in learning about unknowns from observed (noisy) data







#### General context: Bayesian inference

**Bayesian**  $\Rightarrow$  Instead of just a pointwise estimation of the unknowns  $\widehat{x}_{1:n}$ 

we are interested in its posterior probability density function (pdf)

 $\pi_n(x_{1:n}) \equiv p(x_{1:n}|y_{1:n}) \propto p(x_{1:n})p(y_{1:n}|x_{1:n})$ 

thus characterizing all the uncertainty in the model under study.

#### General context: Bayesian inference

**Bayesian**  $\Rightarrow$  Instead of just a pointwise estimation of the unknowns  $\widehat{x}_{1:n}$ 

we are interested in its posterior probability density function (pdf)

$$\pi_n(x_{1:n}) \equiv p(x_{1:n}|y_{1:n}) \propto p(x_{1:n})p(y_{1:n}|x_{1:n})$$

thus characterizing all the uncertainty in the model under study.

**Unfortunately**, in most cases, this posterior pdf is intractable

 $\Rightarrow$  all quantities of interest such as

$$\Theta_n = \mathbb{E}_{\pi_n}[\varphi(X_n)] = \int \varphi(x_n) \pi_n(x_n) dx_n$$

cannot be computed and must be approximated

Sequential Monte-Carlo algorithms

### Outline

#### On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

Revisit of the resampling mechanism Introduction Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion



#### Importance Sampling

Let us define the target distribution of interest which is known up to a normalizing constant Z:

$$\pi(x) = \frac{\gamma(x)}{Z}$$

#### Importance Sampling (IS) identity

For any distribution q such that  $supp(\pi) \subset supp(q)$ 

$$\mathbb{E}_{\pi}[h(X)] = \int h(x) \frac{\pi(x)}{q(x)} q(x) dx$$

 $q(\cdot)$  is called importance (or proposal / instrumental) distribution

 $q(\cdot)$  can be chosen arbitrarily, in particular easy to sample from.

#### Importance Sampling

Let us define the target distribution of interest which is known up to a normalizing constant Z:

$$\pi(x) = \frac{\gamma(x)}{Z}$$

#### Importance Sampling (IS) identity

For any distribution q such that  $supp(\pi) \subset supp(q)$ 

$$\mathbb{E}_{\pi}[h(X)] = \int h(x) \frac{\pi(x)}{q(x)} q(x) dx$$
$$= \int h(x) w(x) q(x) dx = \mathbb{E}_{q}[h(X) w(x)]$$

 $q(\cdot)$  is called *importance* (or proposal / instrumental) distribution  $w(x) = \pi(x)/q(x)$  is called *importance weight*.

 $q(\cdot)$  can be chosen arbitrarily, in particular easy to sample from.

#### Importance Sampling

Target distribution of interest:  $\pi(x) = \frac{\gamma(x)}{Z}$ 

#### Importance Sampling (IS) identity

For any distribution q such that  $supp(\pi) \subset supp(q)$ 

$$\mathbb{E}_{\pi}[h(X)] = \int h(x)w(x)q(x)dx$$
 with  $w(x) = \pi(x)/q(x)$ 

• Draw independently  $N_p$  samples from  $q(\cdot)$ 

for 
$$j = 1, ..., N_p : X^j \stackrel{iid}{\sim} q(\cdot)$$

Plugging this expression in the IS identity, we obtain [by the Law of Large numbers]:

$$\frac{1}{N}\sum_{i=1}^{N}w(X^{i})h(X^{i}) \stackrel{N\to\infty}{\longrightarrow} \mathbb{E}_{\pi}[h(X)]$$

or self-normalized version (used when Z is unknown)

$$\sum_{i=1}^{N} \frac{w(X^{i})}{\sum_{j=1}^{N} w(X^{j})} h(X^{i}) \stackrel{N \to \infty}{\longrightarrow} \mathbb{E}_{\pi}[h(X)]$$
  
with  $w(X^{i}) = \frac{\gamma(X^{i})}{q(X^{i})}$ 

### Outline

#### On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

Revisit of the resampling mechanism Introduction Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion



### General SMC methodology

Aim: Approximate a sequence of target pdf of increasing dimension

 $\left\{\pi_n(x_{1:n})\right\}_{n\geq 1}$ 

i.e. the dimension of its support forms an increasing sequence with n.

• In practice:  $\pi_n$  only known up to a normalizing constant,

$$\pi_n(x_{1:n}) = \frac{\gamma_n(x_{1:n})}{Z_n}$$

### General SMC methodology

Aim: Approximate a sequence of target pdf of increasing dimension

$$\left\{\pi_n(x_{1:n})\right\}_{n\geq 1}$$

i.e. the dimension of its support forms an increasing sequence with n.

• In practice:  $\pi_n$  only known up to a normalizing constant,

$$\pi_n(x_{1:n}) = \frac{\gamma_n(x_{1:n})}{Z_n}$$

• Originally developed for filtering in hidden Markov model (HMM) with

$$\gamma_n(x_{1:n}) = p(x_{1:n}, y_{1:n})$$

**BUT** can be used for other sequence of target pdf.

- Sequence of *importance sampling* (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \gamma_n(x_{1:n})/Z_n$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k|x_{1:k-1})$

- Sequence of importance sampling (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \frac{\gamma_n(x_{1:n})}{Z_n}$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k | x_{1:k-1})$

**Procedure at time** *n* and  $\forall j = 1, ..., N$  [Gordon et al, 1993]

• Sampling - Propagate each trajectory:  $\widetilde{X}_n^j \sim q_n(x_n | X_{1:n-1}^j)$ 

- Sequence of importance sampling (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \gamma_n(x_{1:n})/Z_n$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k|x_{1:k-1})$

**Procedure at time** *n* and  $\forall j = 1, ..., N$  [Gordon et al, 1993]

- Sampling Propagate each trajectory:  $\widetilde{X}_n^j \sim q_n(x_n | X_{1:n-1}^j)$
- Weighting Compute each importance weight:

$$W_{n}^{j} \propto W(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j}) = \frac{\gamma_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}{q_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})} = \underbrace{\frac{\gamma_{n-1}(X_{1:n-1}^{j})}{q_{n-1}(X_{1:n-1}^{j})}}_{W(X_{1:n-1}^{j})} \underbrace{\frac{\gamma_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}{\gamma_{n-1}(X_{1:n-1}^{j})q_{n}(\widetilde{X}_{n}^{j}|X_{1:n-1}^{j})}}_{\widetilde{w}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}$$
Previous weight
$$\underbrace{\gamma_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}_{\text{Incremental weight}}$$

 $\Rightarrow$  for filtering problem in HMM with  $\gamma_n(x_{1:n}) = p(x_{1:n}, y_{1:n})$ , we simply have

$$\widetilde{w}(X_{1:n-1}^{j},\widetilde{X}_{n}^{j})=\frac{g_{n}(y_{n}|\widetilde{X}_{n}^{j})f_{n}(\widetilde{X}_{n}^{j}|X_{n-1}^{j})}{q_{n}(\widetilde{X}_{n}^{j}|X_{1:n-1}^{j})}.$$

- Sequence of importance sampling (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \gamma_n(x_{1:n})/Z_n$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k | x_{1:k-1})$

**Procedure at time** *n* and  $\forall j = 1, ..., N$  [Gordon et al, 1993]

- Sampling Propagate each trajectory:  $\widetilde{X}_n^j \sim q_n(x_n | X_{1:n-1}^j)$
- Weighting Compute each importance weight:

$$W_{n}^{j} \propto W(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j}) = \frac{\gamma_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}{q_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})} = \underbrace{\frac{\gamma_{n-1}(X_{1:n-1}^{j})}{q_{n-1}(X_{1:n-1}^{j})}}_{W(X_{1:n-1}^{j})} \underbrace{\frac{\gamma_{n}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}{\gamma_{n-1}(X_{1:n-1}^{j}, q_{n}(\widetilde{X}_{n}^{j}|X_{1:n-1}^{j})}}_{\widetilde{W}(X_{1:n-1}^{j}, \widetilde{X}_{n}^{j})}$$
Previous weight
$$\pi_{n}(x_{n}) \qquad \Rightarrow \text{Empirical approximation via a random measure } \{W_{n}^{j}, \widetilde{X}_{n}^{j}\}_{j=1}^{N}$$

$$\underbrace{\sum_{j=1}^{N} W_{n}^{j}}_{\sum_{j=1}^{N} W_{n}^{j}} \underbrace{\sum_{j=1}^{N} W_{n}^{j}}_{X_{n}^{j}} = 1$$

- Sequence of importance sampling (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \gamma_n(x_{1:n})/Z_n$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k | x_{1:k-1})$

**Procedure at time** *n* and  $\forall j = 1, ..., N$  [Gordon et al, 1993]

- Sampling Propagate each trajectory:  $\widetilde{X}_n^j \sim q_n(x_n | X_{1:n-1}^j)$
- Weighting Compute each importance weight:

$$W_n^j \propto W(X_{1:n-1}^j, \widetilde{X}_n^j) = W(X_{1:n-1}^j) \widetilde{w}(X_{1:n-1}^j, \widetilde{X}_n^j)$$

$$\Theta_n = \mathbb{E}_{\pi_n}[\varphi(X_n)] \Rightarrow \left(\widehat{\Theta}_n^{SIS,N} = \sum_{j=1}^N W_n^j \varphi(\widetilde{X}_n^j)\right)$$

### Sequential Importance Sampling

#### Sequential Importance Sampling Algorithm

1: At time 1: for 
$$j = 1, ..., N_{\rho}$$
, sample  $X_1^j \sim q_1(x_1)$  and set  $w_1^j = \frac{\gamma_1(X_1^j)}{q_1(X_1^j)}$ 

- 2: **for** time k > 1 **do**
- 3: for  $j = 1, \dots, N$  do
- 4: Sample  $\widetilde{X}_n^j \sim q_n(\cdot|X_{n-1}^j)$

5: Compute Importance weight  $W_n^j \propto W_{n-1}^j \frac{\gamma_n(X_{1:n-1}^j, \hat{X}_n^j)}{\gamma_{n-1}(X_{1-1}^j, q_n) q_n(X_{1-1}^j, X_{1-1}^j)}$ 

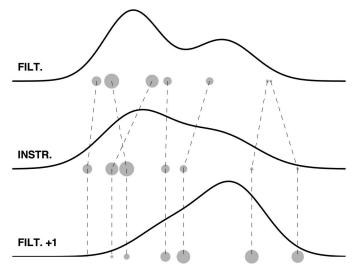
6: Set 
$$X_n^j = \widetilde{X}_n^j$$

7: end for

Target pdf:  $\widehat{\pi}_n(\mathbf{x}_{1:n}) = \sum_{i=1}^N W_n^j \delta_{X_{1:n}^i}(d\mathbf{x}_{1:n})$   $\Theta_n = \mathbb{E}_{\pi_n}[\varphi(X_n)] \approx \widehat{\Theta}_n^{SIS,N} = \sum_{j=1}^N W_n^j \varphi(\widetilde{X}_n^j)$ Normalizing constant:  $\widehat{Z}_n = \sum_{j=1}^N W_n^j$ 

9: end for

### Sequential Importance Sampling



One step of the SIS algorithm with just seven particles.

#### SIS : Choice of the proposal distribution

The so-called "optimal" choice of  $q_n(\cdot)$  (for filtering in HMM) that minimizes the variance of the importance weights, consists in setting

$$q_n(x_n|x_{n-1}) = \frac{g_n(y_n|x_n)f_n(x_n|x_{n-1})}{\int g_n(y_n|x_n)f_n(x_n|x_{n-1})dx_n}$$

Consequently the weights does not depend on current state value but only on the previous one  $(x_{n-1})$ , i.e. :

$$W_n^j \propto W_{n-1}^j \int g_n(y_n|x_n) f_n(x_n|x_{n-1}^j) dx_n$$

#### SIS : Choice of the proposal distribution

The so-called "optimal" choice of  $q_n(\cdot)$  (for filtering in HMM) that minimizes the variance of the importance weights, consists in setting

$$q_n(x_n|x_{n-1}) = \frac{g_n(y_n|x_n)f_n(x_n|x_{n-1})}{\int g_n(y_n|x_n)f_n(x_n|x_{n-1})dx_n}$$

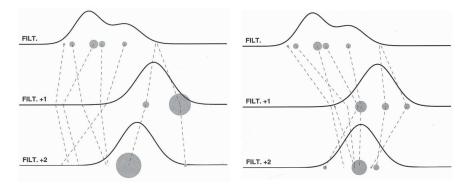
Consequently the weights does not depend on current state value but only on the previous one  $(\mathbf{x}_{n-1})$ , i.e. :

$$W_n^j \propto W_{n-1}^j \int g_n(y_n|x_n) f_n(x_n|x_{n-1}^j) dx_n$$

This is however usually not feasible and common choices include :

- the prior  $q_n(x_n|x_{n-1}) = f_n(x_n|x_{n-1})$  (and then  $W_n^j \propto W_{n-1}^j g_n(y_n|X_n^j)$ ),
- approximations (sometimes heuristic) to the optimal one (moment matching, use of EKF or UKF, ...),
- tuning parameters of  $q_n(\cdot)$  so as to maximize some criterions: effective sample size, entropy, ...

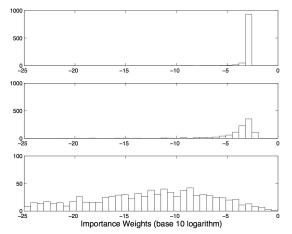
### SIS : Choice of the proposal distribution



SIS with the of the prior (left) and the optimal (right) distribution as proposal.

 $\Rightarrow$  Choice of this proposal distribution is an important step when one want to design an efficient SIS algorithm.

### SIS: Weight Degeneracy



Histograms of the base 10 logarithm of the normalized weights for t = 1 (top), t = 50 (middle) and t = 100 (bottom) for a simple stochastic volatility model.

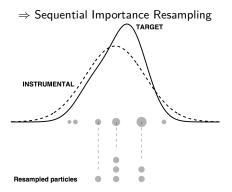
The algorithm performance collapse as time (n) increases... After a few time steps, only a very small number of particles have non negligible weigths !!

### SIS: Resampling Step

**Problem:** After a few time steps, only a very small number of particles have non negligible weigths !

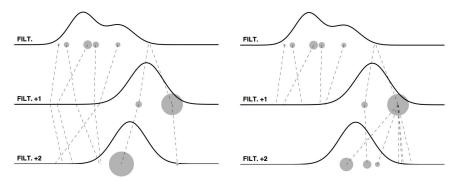
**Solution:** Replicate particles with large weights and eliminate those with small weights to prevent the problems we saw with SIS (at the price of a, usually moderate, increase in variance).

 $\hookrightarrow$  Use random resampling techniques by taking importance weights: multinomial, residual, ...



#### Sequential Importance Sampling Resampling

SIS (left) versus SIR (right)

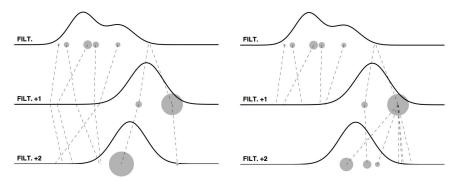


The resampling step is necessary to ensure the long-term stability of the filtering algorithm.

 $\hookrightarrow$  Maintain a reasonable number of contributing particles at all times.

#### Sequential Importance Sampling Resampling

SIS (left) versus SIR (right)



The resampling step is necessary to ensure the long-term stability of the filtering algorithm.

 $\hookrightarrow$  Maintain a reasonable number of contributing particles at all times.

**BUT** it reduces the number of distinct samples  $\Rightarrow$  sample impoverishment

### SMC technique: summary

- Sequence of importance sampling (IS) steps, where at each step n
  - the target distribution is  $\pi_n(x_{1:n}) = \gamma_n(x_{1:n})/Z_n$
  - the importance distribution is  $q_n(x_{1:n}) = q_1(x_1) \prod_{k=2}^n q_k(x_k | x_{1:k-1})$

**Procedure at time** n and  $\forall j = 1, ..., N$  [Gordon et al, 1993]

- Sampling Propagate each trajectory:  $\widetilde{X}_n^j \sim q_n(x_n | X_{1:n-1}^j)$
- Weighting Compute each importance weight:

$$W_n^j \propto W(X_{1:n-1}^j, \widetilde{X}_n^j) = W(X_{1:n-1}^j) \widetilde{w}(X_{1:n-1}^j, \widetilde{X}_n^j)$$
$$\Theta_n = \mathbb{E}_{\pi_n}[\varphi(X_n)] \Rightarrow \boxed{\widehat{\Theta}_n^{SIS,N} = \sum_{i=1}^N W_k^j \varphi(\widetilde{X}_n^j)}$$

• **Resampling** (optional but necessary to avoid *weight degeneracy*): Sample N times from the random measure  $\{W_n^j, X_{1:n-1}^j, \widetilde{X}_n^j\}_{j=1}^N$  to obtain  $\{W_n^j = \frac{1}{N}, X_{1:n}^j\}_{j=1}^N$ 

$$\left(\widehat{\Theta}_{n}^{SIR,N}=rac{1}{N}\sum_{j=1}^{N}\varphi(X_{n}^{j})
ight)$$

### Outline

On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

## Revisit of the resampling mechanism Introduction

Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion



### Effect of the (optional) multinomial resampling step:

Fights against weight degeneracy but no local benefits:

- dependency among the resampled points  $\Rightarrow$  support shrinkage
- $var(\widehat{\Theta}_n^{SIR,N}) \ge var(\widehat{\Theta}_n^{SIS,N})$

### Effect of the (optional) multinomial resampling step:

Fights against weight degeneracy but no local benefits:

- dependency among the resampled points  $\Rightarrow$  support shrinkage
- $var(\widehat{\Theta}_n^{SIR,N}) \ge var(\widehat{\Theta}_n^{SIS,N})$

Key idea: Ph.D thesis of R. Lamberti - [Lamberti et al, IEEE TSP 2017]

Revisit the complete scheme (sampling, weighting and resampling) ↓ Benefits of the resampling mechanism without local impoverishment of the resulting MC approx.

### Outline

On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

#### Revisit of the resampling mechanism

Introduction Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion



### Characterization of sampling / weighting / resampling step

#### Proposition 1

Given  $\{X_{0:n-1}^i\}_{i=1}^N$ , the resampled particles  $X_n^j$  are identically distributed **(but dependent)** according to a pdf  $\tilde{q}_n^N(x)$ , with

$$\widetilde{q}_n^N(x) = \sum_{i=1}^N q_n^i(x) h_n^i(x) \tag{1}$$

where

$$q_{n}^{i}(x) = q(x|X_{0:n-1}^{i})$$

$$h_{n}^{i}(x) = \int \int \frac{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)}}{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)} + \sum_{l \neq i} \frac{\pi_{n}^{i}(x')}{q_{n}^{i}(x')}} \prod_{l \neq i} q_{n}^{l}(x') dx'$$
(2)

This dependency results in support shrinkage since, by construction, an intermediate sample can be resampled several times.

### Characterization of sampling / weighting / resampling step

#### Proposition 1

Given  $\{X_{0:n-1}^i\}_{i=1}^N$ , the resampled particles  $X_n^j$  are identically distributed **(but dependent)** according to a pdf  $\tilde{q}_n^N(x)$ , with

$$\widetilde{q}_n^N(x) = \sum_{i=1}^N q_n^i(x) h_n^i(x) \tag{1}$$

where

$$q_{n}^{i}(x) = q(x|X_{0:n-1}^{i})$$

$$h_{n}^{i}(x) = \int \int \frac{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)}}{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)} + \sum_{l \neq i} \frac{\pi_{n}^{i}(x^{l})}{q_{n}^{i}(x^{l})}} \prod_{l \neq i} q_{n}^{l}(x^{l}) dx^{l}$$
(2)

**Proposition**  $\Rightarrow$  **Scheme to produce independent samples from**  $\widetilde{q}_n^N(x)$ 

#### Proposed independent resampling

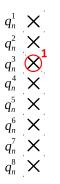
Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

 $\Rightarrow$  weighting & resampling as compound importance distrib.



Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

 $\Rightarrow$  weighting & resampling as compound importance distrib.







Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

 $\Rightarrow$  weighting & resampling as compound importance distrib.







Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

 $\Rightarrow$  weighting & resampling as compound importance distrib.

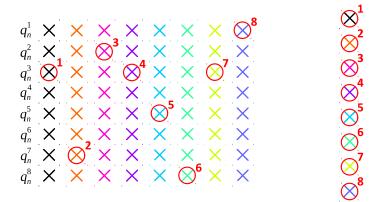






Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

 $\Rightarrow$  weighting & resampling as compound importance distrib.





Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

#### $\Rightarrow$ weighting & resampling as compound importance distrib.

- Sampling N independent particles from  $\tilde{q}_n^N(x)$
- Weighting 2 solutions:
  - 1. Equal weights:  $W_n^i = 1/N$  what is actually done after classical resampling  $\Rightarrow$  Algorithm I-SIR

Method to sample *N* independent particles from  $\tilde{q}_n^N(x)$ 

#### $\Rightarrow$ weighting & resampling as compound importance distrib.

- Sampling N independent particles from  $\tilde{q}_n^N(x)$
- Weighting 2 solutions:
  - 1. Equal weights:  $W_n^i = 1/N$  what is actually done after classical resampling  $\Rightarrow$  Algorithm I-SIR

2. IS principle: 
$$W_n^i \propto \pi_n^i(X_n^i) / \widetilde{q}_n^N(X_n^i)$$
  
 $\Rightarrow$  Algorithm I-SIR-w

However  $\widetilde{q}_{n}^{N}(X_{n}^{i}) = \sum_{i=1}^{N} q_{n}^{i}(x)h_{n}^{i}(x)$  must be approximated since  $h_{n}^{i}(x) = \int \int \frac{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)}}{\frac{\pi_{n}^{i}(x)}{q_{n}^{i}(x)} + \sum_{l \neq i} \frac{\pi_{n}^{l}(x^{l})}{q_{n}^{l}(x^{l})}} \prod_{l \neq i} q_{n}^{l}(x^{l})dx^{l}$  cannot be evaluated  $\Rightarrow h_{n}^{i}$  approximated by the  $N^{2}$  samples

**Contributions**  $\mapsto$  Theoretical study of  $\widehat{\Theta}_n^{\mathrm{I-SIR},N}$ 

• Mean/Variance for finite N (number of samples)

$$\mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{I-SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) = \mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) = \mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{SIS},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}),$$

**Contributions**  $\mapsto$  Theoretical study of  $\widehat{\Theta}_n^{\mathrm{I-SIR},N}$ 

• Mean/Variance for finite N (number of samples)

$$\mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{I-SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) = \mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) = \mathbb{E}(\widehat{\Theta}_{n}^{\mathrm{SIS},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}),$$
  
$$\mathsf{var}(\widehat{\Theta}_{n}^{\mathrm{I-SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) = \mathsf{var}(\widehat{\Theta}_{n}^{\mathrm{SIR},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N}) - \frac{N-1}{N}\mathsf{var}(\widehat{\Theta}_{n}^{\mathrm{SIS},N}|\{X_{0:n-1}^{i}\}_{i=1}^{N})$$

- $\,\circ\,$  The proposed algorithm  $(\widehat{\Theta}_n^{\rm I-SIR})$  would outperform the classical SIR estimate
- Gain depends on var $(\widehat{\Theta}_n^{\text{SIS},N} | \{X_{0:n-1}^i\}_{i=1}^N)$

**Contributions**  $\mapsto$  Theoretical study of  $\widehat{\Theta}_n^{\mathrm{I-SIR},N}$ 

CLT for a single step

$$\sqrt{N}(\widehat{\Theta}^{\mathrm{I}-\mathrm{SIR},N}-\Theta) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}\left(0, \underbrace{\mathrm{var}_{\pi}(\varphi(x))}_{\sigma_{\infty}^{2,\mathrm{I}-\mathrm{SIR}}(q)}\right).$$

for comparison:

$$\begin{split} \sigma_{\infty}^{2,\text{SIS}}(q) &= \mathbb{E}_{q}\left(\frac{\pi^{2}(x)}{q^{2}(x)}(\varphi(x) - \Theta)^{2}\right),\\ \sigma_{\infty}^{2,\text{SIR}}(q) &= \text{var}_{\pi}(\varphi(x)) + \mathbb{E}_{q}\left(\frac{\pi^{2}(x)}{q^{2}(x)}(\varphi(x) - \Theta)^{2}\right) \end{split}$$

• Asymp. variance:  $\sigma_{\infty}^{2,I-SIR}(q) \leq \sigma_{\infty}^{2,SIR}(q)$ •  $\sigma_{\infty}^{2,I-SIR}(q)$  no longer depends on the proposal distribution q

**Contributions**  $\mapsto$  Theoretical study of  $\widehat{\Theta}_n^{\mathrm{I-SIR},N}$ 

CLT for a single step

$$\sqrt{N}(\widehat{\Theta}^{\mathrm{I}-\mathrm{SIR},N}-\Theta) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{N}\left(0, \underbrace{\mathrm{var}_{\pi}(\varphi(x))}_{\sigma_{\infty}^{2,\mathrm{I}-\mathrm{SIR}}(q)}\right).$$

for comparison:

$$\begin{split} \sigma_{\infty}^{2,\mathrm{SIS}}(q) &= \mathbb{E}_{q}\left(\frac{\pi^{2}(x)}{q^{2}(x)}(\varphi(x) - \Theta)^{2}\right),\\ \sigma_{\infty}^{2,\mathrm{SIR}}(q) &= \mathrm{var}_{\pi}(\varphi(x)) + \mathbb{E}_{q}\left(\frac{\pi^{2}(x)}{q^{2}(x)}(\varphi(x) - \Theta)^{2}\right) \end{split}$$

- $\circ$  Asymp. variance:  $\sigma^{2,\mathrm{I-SIR}}_\infty(q) \leq \sigma^{2,\mathrm{SIR}}_\infty(q)$
- $\circ~\sigma_{\infty}^{2,\mathrm{I-SIR}}(q)$  no longer depends on the proposal distribution q
- $\,\circ\,$  Difficult to compare  $\sigma_\infty^{2,\mathrm{I-SIR}}(q)$  and  $\sigma_\infty^{2,\mathrm{SIS}}(q)$

### Outline

On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

#### Revisit of the resampling mechanism

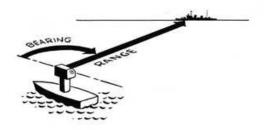
Introduction Proposed Independent Resampling scheme Some numerical simulations The semi-independent resampling

Conclusion



- State of interest  $x_n = [p_{x,n}, \dot{p}_{x,n}, p_{y,n}, \dot{p}_{y,n}]^T$  position and velocity of a target
- Tracking scenario with range-bearing measurements  $\Rightarrow$  likelihood pdf:

$$g_n(y_n|x_n) = \mathcal{N}\left(y_n; \begin{bmatrix} \sqrt{p_{x,n}^2 + p_{y,n}^2} \\ \arctan \frac{p_{y,n}}{p_{x,n}} \end{bmatrix}, R \right) \text{ with } R = \begin{pmatrix} \sigma_\rho^2 & 0 \\ 0 & \sigma_\theta^2 \end{pmatrix}$$





- State of interest  $x_n = [p_{x,n}, \dot{p}_{x,n}, p_{y,n}, \dot{p}_{y,n}]^T$  position and velocity of a target
- Tracking scenario with range-bearing measurements ⇒ likelihood pdf:

$$g_n(y_n|x_n) = \mathcal{N}\left(y_n; \begin{bmatrix} \sqrt{p_{x,n}^2 + p_{y,n}^2} \\ \arctan \frac{p_{y,n}}{p_{x,n}} \end{bmatrix}, R \right) \text{ with } R = \begin{pmatrix} \sigma_\rho^2 & 0 \\ 0 & \sigma_\theta^2 \end{pmatrix}$$

• Prior knowledge on the dynamics of the unknown state:

Near Constant Velocity (NCV) model

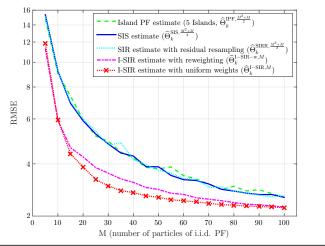
$$f_n(x_n|x_{n-1}) = \mathcal{N}(x_n; Fx_{n-1}, Q)$$

with

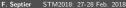
$$F = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } Q = \sigma_Q^2 \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 1 \end{pmatrix}$$

Target tracking scenario: range-bearing measurements ( $\sigma_Q = \sqrt{10}$ ,  $\sigma_\rho = 0.05$ ,  $\sigma_\theta = \frac{\pi}{3600}$ )

Comparison with other SMC algorithms in which the number of particles is chosen so that they have the same computational cost



For RMSE=2.7  $N_{\rm I-SIR} = 50$ vs  $N_{\rm SIS} = 5050$ 



#### Summary of the proposed I-SIR

- No support degeneracy: better particle diversity for the next iteration
- · Gain in terms of variance of the resulting estimator



#### Summary of the proposed I-SIR

- No support degeneracy: better particle diversity for the next iteration
- · Gain in terms of variance of the resulting estimator

#### but

•  $N^2$  sampling & weighting steps: higher computational cost than the classical PF if  $N_{SIS} = N_{I-SIR}$ .

#### Summary of the proposed I-SIR

- No support degeneracy: better particle diversity for the next iteration
- · Gain in terms of variance of the resulting estimator

#### but

•  $N^2$  sampling & weighting steps: higher computational cost than the classical PF if  $N_{SIS} = N_{I-SIR}$ .

#### However

- Resampling is not necessarily needed at each iteration
- Independent resampling can be parallelized
- In some cases [as in before], performs better even when  $N_{I-SIR}^2 + N_{I-SIR} = 2N_{SIS}$

#### Summary of the proposed I-SIR

- No support degeneracy: better particle diversity for the next iteration
- · Gain in terms of variance of the resulting estimator

#### but

•  $N^2$  sampling & weighting steps: higher computational cost than the classical PF if  $N_{S/S} = N_{I-S/R}$ .

#### However

- $\circ~$  Resampling is not necessarily needed at each iteration
- Independent resampling can be parallelized
- In some cases [as in before], performs better even when  $N_{I-SIR}^2 + N_{I-SIR} = 2N_{SIS}$

# Can we propose a general framework that will include classical and independent as a special case ?

### Outline

On sequential Monte-Carlo methods A brief review of importance sampling Introduction to SMC methods

#### Revisit of the resampling mechanism

Introduction Proposed Independent Resampling scheme Some numerical simulations

The semi-independent resampling

Conclusion



Classical SIR



 $q_n^1$  $q_n^2$  $q_n^2$ 

 $q_n^4$   $q_n^5$   $q_n^6$   $q_n^6$   $q_n^7$   $q_n^8$ 

×××××××

Independent I-SIR

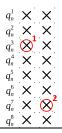




/35

F. Septier STM2018: 27-28 Feb. 2018

Classical SIR





Independent I-SIR





35

F. Septier STM2018: 27-28 Feb. 2018

Classical SIR





Independent I-SIR





35

F. Septier STM2018: 27-28 Feb. 2018

Classical SIR



Ø

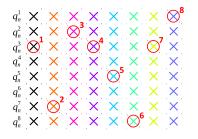
 $\bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes$ 

 $\bigotimes^{1} \bigotimes^{2} \bigotimes^{3} \bigotimes^{4} \bigotimes^{4} \bigotimes^{5} \bigotimes^{6} \bigotimes^{6}$ 

⊘<sup>7</sup> ⊗<sup>8</sup>

35

Independent I-SIR



Idea  $\mapsto$  Regenerate only  $0 \le k \le N = 8$  samples per iterations

 $\otimes^1$ 

35

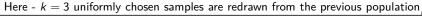
Independent I-SIR  $\begin{array}{c|c} q_n^1 & \times & \\ q_n^2 & \times^{\mathbf{1}} \\ q_n^3 & & \\ q_n^4 & \times \\ q_n^5 & \times \\ q_n^6 & \times \\ q_n^7 & & \\ q_n^7 & & \\ \end{array}$ 

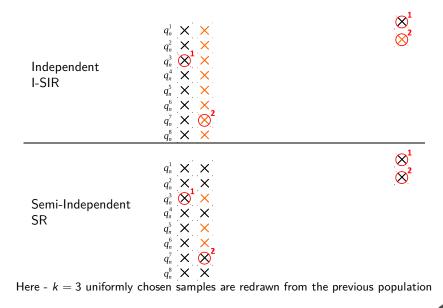
 $q_n^1 \times$ 

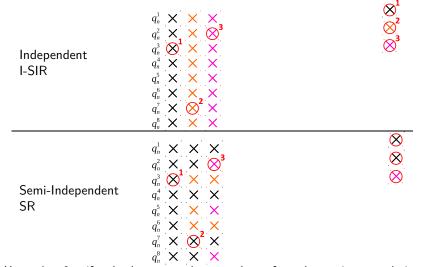
 $q_n^2$  $q_n^3$  $q_n^4$ 

 $\begin{array}{ccc} q_n^5 & \times & & \ q_n^6 & \times & \ q_n^7 & \times & \ q_n^8 & \times & \ q_n^8 & \times & \end{array}$ 

Semi-Independent SR

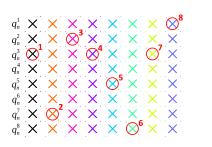






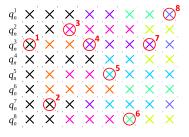
Here - k = 3 uniformly chosen samples are redrawn from the previous population

Independent I-SIR



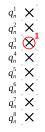
35

Semi-Independent SR



Remark: Not anymore parallelized when 0 < k < N !

Semi-Independent SR



 $q_n^1 \times$ 

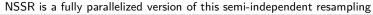
 $q_n^2$  $q_n^3$  $q_n^4$ 

 $q_n^5$ 

 $q_n^6 \times q_n^7 \times q_n^7 \times q_n^8 \times$ 

X

Semi-Independent NSSR



F. Septier STM2018: 27-28 Feb. 2018

Revisit of the resampling mechanism used in importance sampling methods



 $\otimes$ 

q,

 $q_n^8$ 

хх

X

 $\bigotimes^1 \bigotimes^2$ 

Semi-Independent NSSR

Semi-Independent

SR

NSSR is a fully parallelized version of this semi-independent resampling

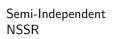


F. Septier STM2018: 27-28 Feb. 2018

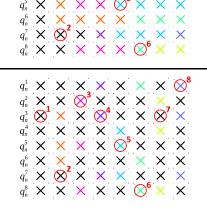
 $\otimes$   $\otimes$   $\otimes$ X  $q_r^1$ Semi-Independent SR  $q_n^5$  $q_r^{\epsilon}$  $q_r^7$  $q_n^8$ х  $\otimes$   $\otimes$   $\otimes$ Semi-Independent NSSR q  $q_n^{\epsilon}$ 

NSSR is a fully parallelized version of this semi-independent resampling

Semi-Independent SR



F. Septier



хх

NSSR is a fully parallelized version of this semi-independent resampling

 $\otimes$   $\otimes$   $\otimes$   $\otimes$   $\otimes$ 

- Generalization of classical SIR and the previous independent I-SIR
  - When k = 0 regenerated samples  $\Rightarrow$  SR=NSSR=SIR
  - When k = N regenerated samples  $\Rightarrow$  SR=NSSR=I-SIR



- Generalization of classical SIR and the previous independent I-SIR
  - When k = 0 regenerated samples  $\Rightarrow$  SR=NSSR=SIR
  - When k = N regenerated samples  $\Rightarrow$  SR=NSSR=I-SIR
- Statistical properties: Given the previous set of particles  $\{X_{0:n-1}^i\}_{i=1}^N$ , for all k,  $0 \le k \le N$ , we have:

$$\mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SIR},N})$$

Each sample  $X_n^i$  are marginally drawn from the same distribution  $\tilde{q}_n^N(x)$ 

- Generalization of classical SIR and the previous independent I-SIR
  - When k = 0 regenerated samples  $\Rightarrow$  SR=NSSR=SIR
  - When k = N regenerated samples  $\Rightarrow$  SR=NSSR=I-SIR
- Statistical properties: Given the previous set of particles  $\{X_{0:n-1}^i\}_{i=1}^N$ , for all k,  $0 \le k \le N$ , we have:

$$\begin{split} \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) &= \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SIR},N}) \\ \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) &\leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SIR},N}) \end{split}$$

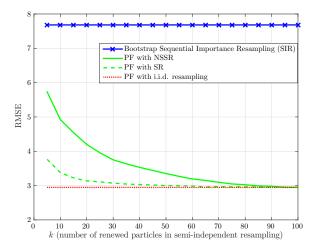
- Generalization of classical SIR and the previous independent I-SIR
  - When k = 0 regenerated samples  $\Rightarrow$  SR=NSSR=SIR
  - When k = N regenerated samples  $\Rightarrow$  SR=NSSR=I-SIR
- Statistical properties: Given the previous set of particles  $\{X_{0:n-1}^i\}_{i=1}^N$ , for all k,  $0 \le k \le N$ , we have:

$$\begin{split} \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) &= \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SIR},N}) \\ \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) &\leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SIR},N,k}) \\ &\qquad \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k-1}) \end{split}$$

- Generalization of classical SIR and the previous independent I-SIR
  - When k = 0 regenerated samples  $\Rightarrow$  SR=NSSR=SIR
  - When k = N regenerated samples  $\Rightarrow$  SR=NSSR=I-SIR
- Statistical properties: Given the previous set of particles  $\{X_{0:n-1}^i\}_{i=1}^N$ , for all k,  $0 \le k \le N$ , we have:

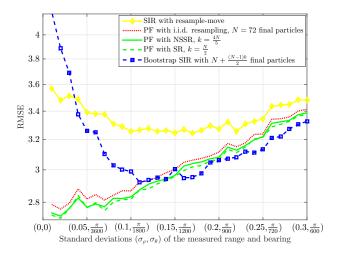
$$\begin{split} \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) &= \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) = \mathrm{E}(\widehat{\Theta}_{t}^{\mathrm{SIR},N}) \\ \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{I}-\mathrm{SIR},N}) &\leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SIR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SIR},N,k}) \\ &\qquad \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{SR},N,k-1}) \\ &\qquad \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k}) \leq \mathrm{var}(\widehat{\Theta}_{t}^{\mathrm{NSSR},N,k-1}) \end{split}$$

Target tracking scenario: range-bearing measurements ( $\sigma_O = \sqrt{10}$ ,  $\sigma_o = 0.1$ ,  $\sigma_\theta = \frac{\pi}{1800}$ )



- Improvement when k increases
- note that  $\widehat{\Theta}_t^{\text{SR},N,k}$  (resp.  $\widehat{\Theta}_t^{\text{NSSR},N}$ ) has almost the same performance as  $\widehat{\Theta}_t^{\text{I-SIR},N}$  when  $k \geq N/2$  (resp.  $k \geq 4N/5$ )

Target tracking scenario: range-bearing measurements ( $\sigma_Q = \sqrt{10}$ ) Comparison with other algorithms, each having the same computational cost



• Significant gain for informative models , i.e. small values for  $(\sigma_{\rho}, \sigma_{\theta})$ 

### Conclusion and Perspectives

#### Conclusion

- Revisit of sampling/resampling as a compound IS distribution
  - Proposition of a general technique to draw (semi-)independent samples
  - Theoretical analysis showing the benefit of such an approach
  - $\circ\;$  At equivalent cost, the proposed approach outperforms the existing techniques in highly informative/high-dimensional models

### Conclusion and Perspectives

#### Conclusion

- Revisit of sampling/resampling as a compound IS distribution
  - Proposition of a general technique to draw (semi-)independent samples
  - Theoretical analysis showing the benefit of such an approach
  - At equivalent cost, the proposed approach outperforms the existing techniques in highly informative/high-dimensional models

#### Perspectives

- Optimization of k (# regenerated samples): trade-off performance & cost
- Non-uniform selection of samples to regenerate