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Overview

• We derive explicit solutions to the problem of completing a
partially specified correlation matrix.
• Our formulas facilitate practical real world applications in

large incomplete dependence structures.

• Among the many possible completions we focus on the
one with maximal determinant.
• Previously no solutions available in the form of explicit

matrix expressions that are readily translated into code.

• Our solutions are useful for testing more general
algorithms for the maximal determinant correlation matrix
completion problem.

• Solutions derived for several block structures for the
locations of the unspecified entries.
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Overview
• Often missing values in a set of variables lead to the

construction of an approximate correlation matrix that
lacks definiteness
• not a true correlation matrix .

• Nearest correlation matrix: replacing the approximate
correlation matrix by the projected nearest correlation matrix,
see [Borsdorf R, Higham NJ. 2010] and [Qi H, Sun D. 2006]

We are concerned with problems in which the missing values
are in the correlation matrix itself.

• Some of the matrix entries are known, having been:
• estimated ;
• prescribed by regulations; or
• assigned by expert judgement,

however, the other entries are unknown!

Nearest correlation matrix solutions will preclude this important
case as the projections required distort all elemts!
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Overview

• The aim is to fill in the missing entries in order to produce a
correlation matrix

• Of course there are, in general, many possible
completions!!!

For example, the partially specified matrix

A =

[
1 a12

a12 1

]
is a correlation matrix for any a12 such that |a12| ≤ 1.

• Our focus is on the completion with maximal
determinant.
• given by a12 = 0 in this example.

It is always unique when completions exist!
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Bank and Insurance Context

An insurance company or a bank with many lines of business
must satisfy certain capital requirements i.e. calculation of
Tier I capital (Basel III) and SCR (Solvency II).

• Such quantification of capital requires aggregation of
multiple stochastic risk drivers over multiple lines of
business.

• PROBLEM: often institutions have incomplete knowledge
of the underlying correlation structures between risk
exposures/drivers between the different lines of business.

Insurance and risk management utilises correlation matrices in
the aggregation of risk exposures.
• Correlations can provide risk diversification benefits in

capital risk measure charges!
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Capital Quantification via Risk Measures

Consider coherent risk measures ([Artzner et al., 1999]).

Definition (A coherent risk measure)

A coherent risk measure, %[X ], is defined to have the following
properties for any two random variables X and Y :
• Translation invariance: for any constant c,
%[X + c] = %[X ] + c;

• Monotonicity: if X ≤ Y for all possible outcomes, then
%[X ] ≤ %[Y ];

• Subadditivity: %[X + Y ] ≤ %[X ] + %[Y ];
• Positive homogeneity: for any positive constant c,
%[cX ] = c%[X ].

We are interested in subadditivity arising from
dependence!
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Capital Quantification via Risk Measures

A popular class of coherent risk measures is the so-called
spectral risk measures: eg. VaR, ES and SRM.

Definition (Value-at-Risk)
The VaR of a random variable X ∼ F (x) at the α-th probability
level, VaRα[X ], is defined as the α-th quantile of the distribution
of X , i.e.

VaRα[X ] = F−1(α) = inf{x : Pr[X > x ] ≤ 1− α}
= inf{x : F (x) ≥ α}
= sup{x : F (x) < α}.

That is, VaR is the minimum threshold exceeded by X with
probability at most 1− α.
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Capital Quantification via Risk Measures
Why do we care about correlation in this problem?

• Consider a collection of risks X1, . . . ,Xn with aggregate
risk measure %[·] and individual risk capital denoted by
%i = %[Xi ].

• If these risks are combined into one business, then the
total capital (coherent risk measures) for the business
satisfies

%[X1 + · · ·+ Xn] ≤ %1 + · · ·+ %n

• Dependence between loss processes can cause
increases or decreases in aggregate capital!

Lets explore the role of dependence in sub-additive risk
measures further for partial sums in two simple cases:
• Indpendent losses and
• Dependent losses

More general detailed results are discussed in
[Peters and Shevchenko, 2016 Chapter 7].
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Capital Quantification via Risk Measures
• In light tailed loss distribution cases Sub-additivity of risk

measures known to hold in general
⇒ we can concentrate on some heavy tailed loss process
examples (R.V. or Sub-exponential).

Lemma (Convolution Root Closure of Sub-exponential Distributions)

Assume that the partial sum Zn =
∑n

i=1 Xi is regularly varying with
index ρ ≥ 0, such that ∀t > 0:

lim
x→∞

FZn (t x)

FZn (x)
= tρ

with each Xi being i.i.d. with positive support.

Then for all i ∈ {1, . . . ,n}, the Xi ’s are regularly varying, also with
index ρ and the following asymptotic equivalence as x →∞ holds

Pr [Zn > x ] ∼ nPr [X1 > x ] , ∀n ≥ 1.

This is a case where eventually for severe enough capital
requirements (risk measure quantile level) asymptotically the
sub-additivity will be equality (to first order approximation)
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Capital Quantification via Risk Measures
In [Danielsson et al, 2005] they showed the following
proposition (for asset returns - negative support case)

Theorem
Consider two asset return random variables X1 and X2 having
jointly regularly varying nondegenerate tails with tail index
α > 1.
Then VaR is subadditive in the tail region.

• Note that X1 and X2 are allowed to be dependent.
⇒ at sufficiently low probability levels, the VaR of a portfolio
position is lower than the sum of the VaRs of the individual
positions, if the return distribution exhibits fat tails!
• Examples: a multivariate Student-t distribution with

degrees of freedom larger than 1 is one such example.
Conversely - we see diversification is lost in general for super
heavy tails α < 1.
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Capital Quantification via Risk Measures
Common dependent loss r.v. case: based on ideas in [Asmussen, 2008]

Theorem (Partial Sums: LogNormal-Gaussian Copula)

Consider a partial sum of n losses with marginal distribution Xi ∼ FXi given by
a LogNormal distribution satisfying the tail asymptotic given by

F Xi (x ;µi , σii ) ∼
√
σii√

2π ln x
exp

(
− (ln x − µi )

2

2σii

)

and a copula distribution C given by the multivariate Gaussian copula with
mean vector (µ1, µ2, . . . , µn) and covariance matrix (σij )n×n.
In this case, one has a partial sum tail asymptotic given by

Pr [Zn > x ] ∼ mnF (x ;µ∗, σ∗)

with

σ∗ = max
1≤k≤n

σkk , µ∗ = max
k :σkk =σ∗

µk

mn = Cardinality {k : σkk = σ∗, µk = µ∗} .

mn < n asymptotically gives sub-additivity in risk measures.
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Capital Quantification via Risk Measures
Sub-additivity of risk measures and diversification benefits
of aggregated dependent loss processes can reduce or
increase capital!

• Correlation completion methods can strongly affect the
outcome

⇒ regulators and industry require guidance on
mathematical best practice to avoid moral hazard in
artificial capital reduction!
Without mathematical solutions for most onerous completions
the regulator and the industry will generally diverge on their
correlation best estimates on missing components in their
BU/RT matrices!

• Regulator: increased stability
⇒ increased capital;

• Industry: reduced cost and greater liquidity of assets
⇒ reduced capital.
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Capital Quantification via Risk Measures
The true total capital for d loss processes that are dependent is the risk
measure of ρ

(∑d
i=1 Xi

)
⇒ difficult to find general closed form properties of distribution of∑d

i=1 Xi in dependent case!

SOLVENCY II Standard Formula: approximation for total capital

• aggregate the capital requirement for different risk exposures as follows:

ρ

(
d∑

i=1

Xi

)
≈
√

ρT Σρ

• ρ = [ρ1, . . . , ρn] is a vector of capital requirements for the
individual risk categories; and

• Σ is the correlation matrix specifying the dependence:
specified or constrained by the regulations.

• Approximation based on assumption that underlying distribution of risk
capital is multivariate normal, or more generally elliptically contoured.

the isolines are given by:
√
ρT Σρ = c

CHALLENGE: often in practice not all of the entries in the correlation matrix
Σ are known.
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Insurance Application
• Correlation coefficients are typically fully specified in the

business unit with the BU-specific risk.
• Correlations are also specified between similar risk

families in different business units.

For example consider the case of just two business units BU1
and BU2:
• Both are exposed to risks x and y , but only BU1 is exposed

to risk z.
• Correlations are specified between risk z, x , and y in BU1,

but not between x and y in BU2, and z in BU1.

Correlations x y z x y

BU1

x 1 0.7 0.85 0.85 0.75
y 0.7 1 0.6 0.5 0.85
z 0.85 0.6 1 * *

BU2
x 0.85 0.5 * 1 0.75
y 0.75 0.85 * 0.75 1
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Application Context

• Correlations likely to be missing in areas of risk
management and insurance where data and loss event
history is scarce⇒ large gaps in the data records:
• in operational risk,
• reinsurance,
• catastrophe insurance,
• life insurance, and
• cyber risk.

• The estimation of missing correlations is also important in
banking capital calculations
• Example in the internal model-based approach to market

risk and the advanced measurement approach (AMA) and
(SMA) for operational risk.

• Other important applications include correlation effects in
stress testing and scenario analysis
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Banking Risk: Business Lines and Risk Types

Banking has three main risk classes:
• Market,
• Credit and
• Operational Risk

• Operational Risk is evolving, by loss events incurred, to be
the leading risk type in banking out of the three core risks!

In Operational Risk
• At level 1: Basel II/III requires 56 business unit/risk type

loss processes.
• At level 2 and greater granularity: this can reach 100’s to

1000’s of BuRT cells in practice.
Many unknown/missing correlations present!
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Banking Risk: Business Lines and Risk Types
• Advanced Measurement Approaches (AMA): Internal

model for 56 risk cells (7 event types × 8 business lines).
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Banking Risk: Business Lines and Risk Types
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Insurance Risk: Business Lines and Risk Types

Lines of Insurance: one can generally classify insurance
companies by the type of insurance policies they write.
• Insurance coverages are often broken down via lines of

insurance.
• Information about premiums and losses is frequently

analyzed by line of insurance at the company level.
Four Major Lines of Insurance:
• Property;
• Casualty;
• Life;
• Health and Disability;

Many large companies write all lines of insurance.
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Insurance Risk: Business Lines and Risk Types
Each of the four major categories of insurance can be further
subdivided into:
• Personal

• Personal lines are property-casualty coverages that protect
an individual or family.

• Commercial
• Commercial lines are coverages designed for businesses.

e.g. of commercial lines of business
• professional indemnity;

• product liability;

• political risk;

• financial institutions;

• commercial auto insurance;

• workers compensation insurance;

• federal flood insurance;

• aircraft insurance;

• ocean marine insurance;

• medical malpractice insurance; and

• directors and officers insurance.
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Insurance Risk: Business Lines and Risk Types
Why might there be missing or uncertain correlations
between these commercial lines of business and the risk
types they are exposed to ?
• Reason 1: Contract Writing Specificities!
• Reason 2: Specialty & Nature of Insured Risk!

Example: Reason 1 Most if not all commercial lines share certain
similarities, however it is not unusual that each policy will be tailored
for the type of business being covered and the clients unique needs!

• e.g. structural engineering firm takes professional liability
insurance to protect against claims of:

• negligence in creating a buildings plans, performing
inspections, and supervising construction,
(project specific risks)

• failure to render professional services.
• specific additional coverage for each project, plus coverage

for punitive damages can be added on a general cover.
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Insurance Risk: Business Lines and Risk Types

Example: Reason 2 Specialty Types of Commercial Lines Insurance:

• Debris Removal Insurance: removing debris after a catastrophic
events e.g. fires.

• Builder’s risk insurance: insures buildings while they are being
constructed.

• Glass Insurance: covers broken windows in a commercial
establishment.

• Business Interruption Insurance: lost income and expenses
resulting from property damage or loss. e.g. fire forces closure
for few months, this insurance covers salaries, taxes, rents, and
net profits that would have been earned.

Very challenging to assess / estimate correlations between loss
processes in such specialty risk classes!
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Application Summary
In banking and insurance applications there are many business
units with many BU-specific risks as well as different numbers
of risk families
• Correlation matrices for each BuRT can have hundreds of

columns!
• Many of the correlations between diverse BuRT’s are

completely unknown!
We want to complete the partial correlation matrix Σ̄ to a
fully specified correlation matrix; that is, since the diagonal
is fully specified as ones, to a positive definite matrix.

• Many completions are possible⇒ introduces uncertainty
around the range of potential capital outcomes!

• Completion of most interest is usually a best-estimate
completion in some sense.

• A good candidate is that completion which has maximum
determinant !
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Correlation Completion via MaxDet
MaxDet has several useful theoretical properties:

1 Existence and uniqueness: if positive semidefinite completions
exist then there is exactly one MaxDet completion [Grone et
al., 84].

2 Maximum entropy model : MaxDet is the maximum entropy
completion for the multivariate normal model, where
maximum entropy is a principle of favouring the simplest
explanations. In the absence of other explanations, we should
choose this principle for the null hypothesis in Bayesian analysis
[Good,63].

3 Maximum likelihood estimation: MaxDet is the maximum
likelihood estimate of the correlation matrix of the unknown
underlying multivariate normal model.

4 Analytic center : MaxDet is the analytic centre of the feasible
region described by the positive semidefiniteness
constraints, where the analytic centre is defined as the point
that maximizes the product of distances to the defining
hyperplanes [Vandenberghe et al, 98].
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Correlation Completion via MaxDet

When considering MaxDet for a correlation matrix we can
observe the following upper bound.
• The determinant of a correlation matrix is at most 1 via

Hadamard’s inequality.
Let matrix A = [aij ] be an n × n positive definite matrix.
Then:

detA ≤ a11 · · · ann

with equality iff A is diagonal.

[Grone et al., 84] showed a partially specified Hermitian matrix
with specified positive diagonal entries and positive principal
minors (where specified) can be completed to a positive definite
matrix regardless of the values of the entries
• iff the undirected graph of the specified entries

(ignoring the leading diagonal) is chordal.
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Correlation Completion via MaxDet
• A graph is chordal if every cycle of length ≥ 4 has a chord,

which is an edge that is not part of the cycle but connects two
vertices of the cycle.

• If the graph is not chordal, then whether a positive symmetric
definite completion exists depends on the specified entries.

• All the sparsity patterns considered in this work are chordal⇒
a positive definite symmetric completion is possible!!!

Adjacency graph for the case in previous 2 BU example below:

z1

x1 y1

x2 y2

[Grone et al. 84] show that if a positive definite completion exists then
there is a unique matrix in the class of all positive definite completions
whose determinant is maximal. 31 / 63



Correlation Completion via MaxDet
Dealing with large matrices with block patterns of specified and
unspecified entries, it is convenient to introduce the definition of
a “block chordal” graph.

Block Chordal Graphs:

• A block is a subgraph which is complete in terms of
edges (a clique).

• Two blocks are connected by an edge if every vertex has
an edge to every other vertex, so the two blocks
considered together also form a clique.

• A graph is block chordal if every cycle of blocks of length
≥ 4 has a chord.

• Finally, a block chordal graph is also chordal since every
block is either fully specified or fully unspecified, so
collapsing each block into one node means that we do
not lose any information in the graph.
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MaxDet and the Dual Covariance Selection

[Dempster, 72] proposed a related problem known as
covariance selection

• [Dahl et al, 08] and [Vandenberghe et al, 98] show that
MaxDet completion and covariance selection are duals of
each other.

Covariance selection: aims to simplify the covariance structure
of a multivariate normal population by setting elements of the
inverse of the covariance matrix to zero.

• The statistical interpretation is that certain variables are
set to be pairwise conditionally independent.
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MaxDet and the Dual Covariance Selection

Multivariate normal setting:
• Conditional independence in general: partition a

multivariate normal random variable X into two sets: I and
J (the idea being that the I variables are independent of
each other, conditioning on J).

• The conditional distribution of XI given XJ is with
covariance matrix

ΣI|J = ΣII − ΣIJΣ−1
JJ ΣJI .

• Conditional independence means that

ΣII − ΣIJΣ−1
JJ ΣJI

is diagonal, i.e., that Xi and Xj are conditionally
independent for I = (i , j).
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MaxDet and the Dual Covariance Selection

The expression for ΣI|J is identical to the inverse of the Schur
complement of ΣJJ in Σ:

(Σ−1)II =

[
ΣII ΣIJ
ΣJI ΣJJ

]−1

II

= (ΣII − ΣIJΣ−1
JJ ΣJI)

−1.

Therefore we require this block to be diagonal or (Σ−1)ij = 0 for
i , j ∈ I with i 6= j .

Another way to see that a determinant-maximizing completion
of MaxDet must have zeros in the inverse corresponding to the
free elements of Σ is by a perturbation argument.
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MaxDet and the Dual Formulation

We need the following lemma [Chan, 84].

Lemma
For v ,w , x , y ∈ Rn,

det(I + vxT + wyT ) = (1 + vT x)(1 + wT y)− (vT y)(wT x).

Using the lemma, we consider how the determinant of a
symmetric positive definite matrix A ∈ Rn×n changes when we
perturb aij (and aji , by symmetry). Let

A(ε) = A + ε(eieT
j + ejeT

i ),

where ei is the i th column of the identity matrix.
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MaxDet and the Dual Formulation
Let B = A−1 and partition B = [b1, . . . ,bn]. Apply the lemma:

det A(ε) = det(A(I + ε(bieT
j + bjeT

i )))

= det(A) det(I + ε(bieT
j + bjeT

i ))

= det(A)
[
(1 + εbT

i ej )(1 + εbT
j ei )− ε2(bT

i ei )(bT
j ej )

]
= det(A)

[
(1 + εbji )(1 + εbij )− ε2biibjj

]
= det(A)

(
1 + 2εbij + ε2(b2

ij − biibjj )
)
.

We want to know when det A(0) is maximal. Since

d
dε

det A(ε)|ε=0 = 2 det(A)bij ,

we need bij = 0 for a stationary point at ε = 0, and from

d2

dε2
det A(ε)|ε=0 = 2 det(A)(b2

ij − biibjj ) < 0

(since B is positive definite), we see that when bij = 0, the quadratic
function det A() has a maximum at = 0.
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MaxDet and the Dual Covariance Selection
In general, solving the MaxDet completion problem (or,
equivalently, the covariance selection problem) requires solving
a convex optimization problem on the set of positive definite
matrices [Dahl et al, 08].

• We develop explicit, easily implementable solutions for
some practically important cases arising in the
insurance application.
• Such solutions are helpful for practitioners and also useful

for testing algorithms that tackle the most general problem.

Let Σ denote the solution of the MaxDet completion problem for
the partially-specified correlation matrix Σ̄.

We give a result for an L-shaped pattern of unspecified
entries in Σ̄.

Note that we do not require a unit diagonal, so it applies more
generally than just to correlation matrices.
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MaxDet and the Dual Covariance Selection

Our solution relies on the results of [Johnson et al., 84].

A positive definite completion necessarily exists for a
partially-specified Hermitian matrix if:
• the diagonal entries are specified,
• specified principal minors are positive, and
• the undirected graph of the specified entries is chordal.

Additionally, if a positive definite completion exists, there is a
unique matrix, in the class of all positive definite completions,
whose determinant is maximal.
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MaxDet and the Dual Covariance Selection

Theorem

Consider the symmetric partially specified matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, the diagonal blocks Aii ,
i = 1 : 4 are all positive definite, and all specified principal
minors are positive.

The maximal determinant completion is

C = DA−1
44 GT , F = BT A−1

11 D, E = FA−1
44 GT .
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MaxDet and the Dual Covariance Selection

Brief comments on Proof:
• The result can be derived by permuting Σ̄ so that the

unspecified matrices appear in the block (1,3), (1,4), and
(2,4) positions and then applying the results of [Dym et al,
81] on completion of block banded matrices.

• The result can also be obtained from [Johnson and
Lundquist, 93], in which the unspecified elements of the
MaxDet completion are given elementwise in terms of the
clique paths in the graph of the specified elements.

Alternatively, we develop an elementary proof based on
Gaussian elimination, using the property that Σ−1 will contain
zeros in the positions of the unspecified entries in Σ̄.
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Basic Proof Steps
• It is easy to check that the graph of the specified entries is

block chordal, and therefore a unique determinant
maximizing positive definite completion exists!

To find it, we need to solve the linear system
A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44




X1
X2
X3
X4

 =


Γ1
Γ2
Γ3
Γ4

 ,
that is,

A11X1 + BX2 + CX3 + DX4 = Γ1, (1)

BT X1 + A22X2 + EX3 + FX4 = Γ2, (2)

CT X1 + ET X2 + A33X3 + GX4 = Γ3, (3)

DT X1 + F T X2 + GT X3 + A44X4 = Γ4, (4)

by Gaussian elimination in order to identify the inverse of the
matrix Σ̄.
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Basic Proof Steps
In this system we can think of C, E , and F as representing any
positive definite completions, so that the coefficient matrix is
positive definite.
• We find the determinant maximizing completions by

enforcing zeros in relevant blocks of the inverse.
The following patterns arise frequently in the working below so we
assign them variable names to condense the formulae:

B = B − DA−1
44 F T ,

C = C − DA−1
44 GT ,

E = E − FA−1
44 GT ,

F = F − BT ∆D,

G = G − CT ∆D,

K = E − BT ∆C,
M = A−1

44 + A−1
44 DT ∆DA−1

44 ,

∆ = (A11 − DA−1
44 DT )−1,

Φ = (A22 − FA−1
44 F T − BT ∆B)−1,

Ξ = (A33 −GA−1
44 GT − CT ∆C − KT ΦK)−1.

• Inverses in definitions of ∆, Φ, and Ξ exist since matrices being
inverted are Schur complements arising in block elimination of
the positive definite matrix Σ̄, so are themselves positive definite.
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Basic Proof Steps
We first solve for X4 in (4), to obtain

X4 = A−1
44 (Γ4 − DT X1 − F T X2 −GT X3),

and substitute this expression into (1) to obtain

A11X1 + BX2 + CX3 + DA−1
44 (Γ4 − DT X1 − F T X2 −GT X3) = Γ1.

We can then express X1 and X4 in terms of X2 and X3 only:

X1 = (A11 − DA−1
44 DT )−1

(
Γ1 − DA−1

44 Γ4 − (B − DA−1
44 F T )X2 − (C − DA−1

44 GT )X3

)
= ∆(Γ1 − DA−1

44 Γ4 − BX2 − CX3) (5)

and

X4 = A−1
44

(
Γ4 − DT ∆(Γ1 − DA−1

44 Γ4 − BX2 − CX3)− F T X2 −GT X3

)
= A−1

44

(
− DT ∆Γ1 + Γ4 + DT ∆DA−1

44 Γ4 − (F T − DT ∆B)X2 − (GT − DT ∆C)X3

)
= A−1

44

(
− DT ∆Γ1 + Γ4 + DT ∆DA−1

44 Γ4 −FT X2 − GT X3

)
. (6)
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Basic Proof Steps
Working with (2) next, and separating the X2 and X3 variables,
we have:

A22X2 = Γ2 − BT X1 − EX3 − FX4

= Γ2 − BT ∆(Γ1 − DA−1
44 Γ4 − BX2 − CX3)− EX3

− FA−1
44 (−DT ∆Γ1 + Γ4 + DT ∆DA−1

44 Γ4 −FT X2 − GT X3)

= −(BT − FA−1
44 DT )∆Γ1 + Γ2 − (F − BT ∆D)A−1

44 Γ4

+ (BT ∆B + FA−1
44 F

T )X2 −
(
E − FA−1

44 GT − (BT − FA−1
44 DT )∆C

)
X3

= −BT ∆Γ1 + Γ2 −FA−1
44 Γ4 + (BT ∆B + FA−1

44 F
T )X2 − (E − BT ∆C)X3.

Therefore

(A22 − BT ∆B − FA−1
44 F

T )X2 = −BT ∆Γ1 + Γ2 −FA−1
44 Γ4 −KX3.

Notice that the left-hand side simplifies to one of our inverse
equations:

(A22−BT ∆B−FA−1
44 F

T )X2 = (A22−FA−1
44 F T−BT ∆B)X2 = Φ−1X2,
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Basic Proof Steps

X2 = Φ
(
− BT ∆Γ1 + Γ2 −FA−1

44 Γ4 −KX3
)
. (7)

Substituting (7) into the expressions (5) and (6) we have

X1 = (∆ + ∆BΦBT ∆)Γ1 −∆BΦΓ2 −∆(D − BΦF)A−1
44 Γ4 −∆(C − BΦK)X3,

X4 = A−1
44 (−DT + FT ΦBT )∆Γ1 − A−1

44 F
T ΦΓ2 + (M+ A−1

44 F
T ΦFA−1

44 )Γ4

+ A−1
44 (FT ΦK − GT )X3. (8)

Finally, we substitute these expressions into (3) to obtain X3 in
terms of Γ1, Γ2, Γ3, and Γ4 which is simplified to

Ξ−1X3 = (−CT +KT ΦBT )∆Γ1 −KT ΦΓ2 + Γ3

+ (KT ΦFA−1
44 −GM+ CT ∆DA−1

44 )Γ4. (9)
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Basic Proof Steps
The only blocks of interest in the inverse of Σ̄ are those that we
denote X3(Γ1) and X3(Γ2), which are defined by

X1
X2
X3
X4

 =


A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44


−1 

Γ1
Γ2
Γ3
Γ4

 =


× × × ×
× × × ×

X3(Γ1) X3(Γ2) × ×
× × × ×




Γ1
Γ2
Γ3
Γ4

 ,
(10)

where “×” denotes a block that is not of interest.

Comparing (9) and (10), we find that

X3(Γ2) = −ΞKT Φ,

and we require this expression to be zero for the maximal
determinant completion.
• Since Φ and Ξ are inverses, they cannot be zero, therefore

we require KT = 0.
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Basic Proof Steps
Similarly, we have

X3(Γ1) = Ξ(−CT +KT ΦBT )∆,

and since KT = 0 (and ∆ and Ξ are nonsingular) we require that
C = 0, which implies that

C = DA−1
44 GT . (11)

The equations C = 0 and K = 0 imply E = 0, and hence

E = FA−1
44 GT .

Denoting by Π the permutation matrix that reverses the order of the
blocks in Σ̄, we have

ΠT Σ̄Π =


A44 GT F T DT

G A33 ET CT

F E A22 BT

D C B A11

 .
The block F T now takes the role of C in the original matrix, so from
(11) we obtain, after transposing, F = BT A−1

11 D.
We have now found the MaxDet completion!
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Computation Efficiency and Accuracy
Accuracy and Efficiency of Computation: should be
evaluated as follows, avoiding explicit computation of matrix
inverses.

Compute Cholesky factorizations:
• A11 = RT

11R11 and
• A44 = RT

44R44,
then evaluate unspecified matrix components according to:

C = (DR−1
44 )(R−T

44 GT ), F = (BT R−1
11 )(R−T

11 D), E = (FR−1
44 )(R−T

44 GT ).

Each of the terms in parentheses should be evaluated as the
solution of a triangular linear system with multiple right
handsides.
• The term R−T

44 GT can be calculated once and reused.
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MaxDet and the Dual Covariance Selection

We identify two useful special cases.

Corollary

Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where E is unspecified, all the diagonal blocks are positive
definite, and all specified principal minors are positive.

The maximal determinant completion is E = BT A−1
11 C.
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MaxDet and the Dual Covariance Selection

Corollary

Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where C is unspecified, all the diagonal blocks are positive
definite, and all specified principal minors are positive.

The maximal determinant completion is C = BA−1
22 E.
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MaxDet and the Dual Covariance Selection

Now we consider a pattern of unspecified elements that arises
when (for example) an insurance company has four business
units where correlations between BU-specific risks are known
• described by the specified blocks A11, A22, A33 and A44 and
• all the correlations are known for the first group of risks (for

example, risk drivers such as interest rates or exchange
rates).

So here we have a complete first block row and column, and
this case cannot be obtained by permuting rows and
columns in Theorem 7.

54 / 63



MaxDet and the Dual Covariance Selection
Theorem

Consider the symmetric matrix


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where E, F , and G are unspecified, all the diagonal blocks are
positive definite, and all specified principal minors are positive.

The maximal determinant completion of the matrix is

E = BT A−1
11 C, F = BT A−1

11 D, G = CT A−1
11 D.

Finally, we consider the case where C, E and F are
unspecified, and B and G are partly specified.
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MaxDet and the Dual Covariance Selection
Theorem

Consider the symmetric matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, B and G are partly specified (possibly
fully unspecified), all the diagonal blocks are positive definite, all specified
principal minors are positive, and the graph of the specified entries is block
chordal.
If B and G are fully unspecified then the maximal determinant completion of
the matrix is

Σ =


n1 n2 n3 n4

n1 A11 0 0 D
n2 0 A22 0 0
n3 0 0 A33 0
n4 DT 0 0 A44

. (12)

Otherwise, the maximal determinant completion of B and G is independent
of the entries in D.
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MaxDet for Large Block Structures

In general we can extend these results in a recursive iterative
manner to get results on larger matrices.

In some examples we need additional results for larger block
structures
• Eg. applications with many business units with many

BU-specific risks.
Correlations are assumed to be known between all “standard”
risk drivers,
• typically the market risks in all business units.

This is because there is generally sufficient data to calculate
correlations between equity indices, interest rates, and credit
spreads, say, across economies.
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MaxDet for Large Block Structures

Table: Example of partial internal model Integration Technique, where
one of the constituents of the standard formula (SF) market risk
module (currency risk) has been included in the IM
⇒ so correlations are required between the SF market risk
submodules and the other SF modules (that is, the green starred
cells).

Module Sub-module
Internal Model 1 0.25 0.6 0.55 0.65 0 0.4 0.6 0.2 0.3

SF
Market risk

Interest rate 0.25 1 0 0 0 0 * * * *
— —-————-— Equity 0.6 0 1 0.75 0.75 0 * * * *
— —-————-— Property 0.55 0 0.75 1 0.5 0 * * * *
— —-————-— Spread 0.65 0 0.75 0.5 1 0 * * * *
— —-————-— Concentration 0 0 0 0 0 1 * * * *

SF Default 0.4 * * * * * 1 0.25 0.25 0.5
SF Life 0.6 * * * * * 0.25 1 0.25 0

SF Health 0.2 * * * * * 0.25 0.25 1 0
SF Non-Life 0.3 * * * * * 0.5 0 0 1
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MaxDet for Large Block Structures

The extension relies on the observation that if the B or G blocks
in the previous Theorem have unknown entries then the
maximal determinant completions for these blocks are
independent of the other entries in the matrix.

• The next Theorem shows the calculation for four business
units, laid out as two instances of the case in the previous
Theorem, in the upper left and bottom right corners of the
matrix Σ̄.

• Three business units can be obtained as a special case
where one business unit has empty elements.

• More than four business units can be accommodated by
repeated applications of the previous Theorem.
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MaxDet for Large Block Structures

Theorem
Consider the symmetric matrix

Σ̄ =



n1 n2 n3 n4 n5 n6 n7 n8

n1 A11 A12 A13 A14 A15 A16 A17 A18

n2 AT
12 A22 A23 A24 A25 A26 A27 A28

n3 AT
13 AT

23 A33 A34 A35 A36 A37 A38

n4 AT
14 AT

24 AT
34 A44 A45 A46 A47 A48

12ptn5 AT
15 AT

25 AT
35 AT

45 A55 A56 A57 A58

n6 AT
16 AT

26 AT
36 AT

46 AT
56 A66 A67 A68

n7 AT
17 AT

27 AT
37 AT

47 AT
57 AT

67 A77 A78

n8 AT
18 AT

28 AT
38 AT

48 AT
58 AT

68 AT
78 A88



=

[ n1+n2+n3+n4 n5+n6+n7+n8

N Q
QT M

]
,

where the diagonal blocks Aii are all positive definite, the specified principal
minors are all positive, and the red blocks are unspecified.
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MaxDet for Large Block Structures
Theorem (Continued)

The maximal determinant completion of the matrix is

A13 = A14A−1
44 AT

34, A24 = AT
12A−1

11 A14, A23 = A24A−1
44 AT

34,

A57 = A58A−1
88 AT

78, A68 = AT
56A−1

55 A58, A67 = A68A−1
88 AT

78,

C = DH−1GT , F = BT A−1D, E = FH−1GT ,

where

A =

[
A11 A14

AT
14 A44

]
, B =

[
A12 A13

A42 A43

]
,

C =

[
A16 A17

A46 A47

]
, D =

[
A15 A18

A45 A48

]
,

E =

[
A26 A27

A36 A37

]
, F =

[
A25 A28

A35 A38

]
,

G =

[
A65 A68

A75 A78

]
, H =

[
A55 A58

AT
58 A88

]
.
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Conclusions

• We have derived explicit solutions for completions with
maximal determinant of a wide class of partially specified
correlation matrices that arise in the context of insurers
calculating economic capital requirements.

• The patterns supported are block diagonal, with either
cross-shaped or (inverted) L-shaped gaps on the
off-diagonal.

• The solutions are easy to evaluate, being expressed in
terms of products and inverses of known matrices.

• Possible directions for future work include developing
explicit solutions for more general patterns of unspecified
entries and allowing semidefinite diagonal blocks and zero
principal minors.
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