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Background and motivation

What is cryptocurrency?

A decentralised digital currency that uses cryptography
to secure its online transactions,
to control the creation of additional units (limited to 21
million for say Bitcoins), and
to verify the transfer of assets (safeguarded again
counterfeiting of currency).

It by-passes centralised regulatory controls and uses
blockchain, a public transaction database.

It is not formally backed up by legal entity
as fiat currency.

Its perceived anonymity has once made
cryptocurrency popular in illegal goods trading.
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Background and motivation

When is cryptocurrency created?

Cryptographic protocols start from early 1980s on
anonymous communication (Chaum 1981).

Its creation is perhaps a libertarian response to the central
bank failure to manage the credit bubbles with barely a
fraction in reserve in 2008.

In October 2008, Nakamoto published a paper titled
“Bitcoin: A Peer-to-Peer Electronic Cash System”.

Bitcoin is the first cryptocurrency created in 2009.

It also competes against online payment methods, e.g.
PayPal.



Advanced statistical models for cryptocurrency research

Background and motivation

How is cryptocurrency now?

There are more than 2800 cryptocurrencies currently,
some have just created and some have already exited.

Total market capitalization:
more than 600 billion USD in Dec 2017.
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Background and motivation

How is cryptocurrency now?

It is increasingly accepted by banks such as UBS and
Credit Suisse.

Bitcoin futures are traded now.

Technological factors: Security & confirmation time.

Ethereum and Dash: have near instant transaction using
technologies smart contract or InstantSend.

Bitcoin and NEM: relatively slower and hence has higher
liquidity risk.

Crytpocurrency is in the early stage of development but it
has the potential to challenge fiat currency.
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Background and motivation

Its role as a currency or speculative asset?

Recently, cryptocurrency market is extremely volatile with
also fast changing cryptocurrency communities.
E.g. Bitcoin

Hence its role as a currency, that is, as medium of exchange,
units of account and stores of value, is questioned.
Recently Australian government removed GST from buying
cryptocurrency, so it is treated as a currency.
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Background and motivation

State of the Art

Many studies were directed to the technological,
economical and legal aspects of cryptocurrencies.

Statistical models are still basic and immature. Examples,

Speculation and volatility: Regression and GARCH
models
To study the determinants of cryptocurrency as a currency
on market stability, competition, efficiency, price driver,
technical factors, turnover and even Google search counts.
Persistence and predictability: Hurst exponential and
fractional integrated model for both returns & volatility, etc.

They mainly focus on Bitcoin, hence fails to detect the
cross dependency for a basket of cryptocurrencies in
portfolio setting.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Data of 224 cryptocurrencies

From the Brave New Coin (BNC) Digital Currency indices.
We consider return as the daily price percentage change
yt = (Pt − Pt−1)/Pt−1 for 224 cryptocurrencies,
exchanged at least once per day since inception.
We further focus on top 5 cryptocurrencies by market
capitalization on July 31, 2017.

Summary statistics for the top 5 cryptocurrencies
Cap No Mean Std. Skew Kur Min. Max. LB1 LB2 NT

BTC 67.76 1225 0.0009 0.0362 -1.046 11.96 -0.254 0.183 439 212 4320
ETH 28.50 732 0.0054 0.0742 -0.098 7.43 -0.396 0.329 244 122 600
RIP 6.77 1225 -0.0003 0.0751 -2.085 40.70 -0.884 0.639 460 89 73427
NEM 2.36 853 0.0046 0.0831 0.526 7.07 -0.320 0.428 227 136 629
Dash 1.50 1219 0.0020 0.0724 0.083 11.75 -0.488 0.523 903 587 3887

LB: Ljung-Box test for residual autocorrelation. LB1: for |yt |; LB2: test y2
t

P-values for all LB test and normality test (NT) are < .0001.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

History plot of yt
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

ACF plot of |yt | for volatility
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Oscillating behaviour!

Bitcoin displays the most oscillating behaviour in ACF.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

SV models with Gegenbauer long memory (GLM),
leverage (LVG) and heavy tails (HT)

We model yt , t = 1,2, ...,T by a stochastic process:

GLM : yt = (1− 2uB + B2)−dεt =
∞∑

j=0

λjεt−j ,

SV : ht+1 = α + β(ht − α) + ηt+1,

LVG-HT :

(
εt
ηt+1

)
∼ tν

((
0
0

)
,

(
eht σρeht/2

σρeht/2 σ2

))
.

where ht is the log-volatility, α is the constant level of
volatility, β (|β| < 1) is the persistence of volatility and σ2 is
the volatility of volatility.
yt has long memory effects when

({|u| < 1,0 < d < 0.5} ∪ {|u| = 1,0 < d < 0.25}).
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

SV models with Gegenbauer long memory (GLM),
leverage (LVG) and heavy tails (HT)

It is a MA(∞) process approximated by a truncated MA(J).

The Gegenbauer coefficients λt satisfy λ0 = 1, λ1 = 2ud
and the recursion

λj = 2u
(

d − 1
j

+ 1
)
λj−1 −

(
2(d − 1)

j
+ 1
)
λj−2, j ≥ 2.

The leverage effect between errors of yt & ht+1 is
ρ = E[εtηt+1].
The bivariate t error distribution is expressed in SMN:(

εt
ηt+1

)
∼ N

((
0
0

)
, ξt+1

(
eht σρeht/2

σρeht/2 σ2

))
where ξt+1 ∼ IG

(
ν
2 ,

ν
2

)
.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

ACF across levels of u and d

u=-0.75

u=0.75

d=0.1 d=0.25 d=0.4

• Larger d is more persistent and invokes clearer cyclic ACF.
• Positive u has smoother autocorrelation cycle.

Negative u has instantaneously oscillating autocorrelation
patterns.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Parameter estimates for 224 cryptocurrencies using
Bayesian MCMC
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Scatter plots of parameter estimates for 224 cryptocurrencies under the
GLM-SV-LVG-HC model.
B: Bitcoin, E: Ethereum, R: Ripples, N: NEM, D: Dash.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Properties of 224 cryptocurrencies

Lower persistence d implies lower predictability:
Moderate in general.
Top 5 all have weak long memory.

ACF instantaneously oscillating:
Most u are negative.
Top 5 are all negative but Ethereum & Dash are close to 0.

High volatility persistence: All β close to 1.

Leverage effect: Moderate and ρ cluster around -0.5.

Two volatility groups depending on ν and σ2.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Two distinct groups in volatility features

Two groups:
Gp 1: Low σ2 but high kurtosis (ν < 7).

Gp 2: High σ2 but low kurtosis (ν > 12).

The wild nature of cryptocurrency
is due to

higher kurtosis (Gp 1) or
higher σ2 (Gp 2)
in their error distributions,
but not both.

Within group 2,
higher σ2 goes with higher kurtosis
lower σ2 goes with lower kurtosis

Group 2

Group 1
low kurtosis κ

high kurtosis κ

�	
lower (κ, σ2)

�
�	

higher (κ, σ2)
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Technological factor for top 5

Bitcoin & NEM tends to be a group & Dash & ETH another.

Ripple is quite distinct: lowest leverage ρ & long memory d .

Users can store any fiat/cryptocurrency asset on the
network, so is the only currency insulated from future
exchange volatility & has no counter-party credit risk.
Due to this safety feature, Ripples is increasingly used by
banks and large corporations as the preferred settlement
infrastructure.

Dash & ETH have faster transaction & lower liquidity risk:
In lower kurtosis group with lighter tails.
Weaker long memory; so less predictability.

Bitcoin & NEM have slower transaction:
In higher kurtosis group with heavier tails.
Relatively stronger oscillating long memory & higher predictability.
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Proposed SV model with Gegenbauer long memory, leverage and heavy tails

Model comparison for Bitcoin
Parameter estimates of six in-sample fitted models for Bitcoin.

Model u d α β σ2 ν ρ DIC
SV -7.690 0.864 0.520 -12285.5
SV-LVG -7.048 0.964 0.103 -0.301 -12808.8
SV-GMA -0.389 0.048 -7.724 0.853 0.579 -12366.2
SV-GMA-LVG -0.396∗ 0.021∗ -7.039 0.964 0.102 -0.298 -12827.9
SV-GMA-HC -0.394 0.056 0.0002∗ 0.998 0.046 3.327 -15745.4
SV-GMA-LVG-HC -0.379 0.053 -0.003∗ 0.998 0.049 3.263 -0.372 -15973.5
GMA: Gengenbauer long memory; LVG: leverage; HC: heavy tails.
Estimate with ∗ is insignificant.

With leverage effect, volatility of volatility σ̂2 drops.
With heavy tails to allow for the distorting effects of outliers,

Volatility of volatility σ̂2 drops further.
Volatility persistence β̂ increases.
Volatility level α̂ increases to 0.
Return persistence gets stronger.
DIC improves significantly.
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

ACF plot of y2
t for volatility
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Oscillating!

Ripples has the least while Dash has the most persistence.
Others are clearly oscillating.
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

Volatility measure

However, volatility measure such as (realised) daily range
is more efficient than the latent volatility ht in the SV model.

We define a volatility measure on real support as

vt = log(Rh,t − Rl,t ),

The high and low daily returns are
Rk ,t = (Pk ,t − Pc,t−1)/Pc,t−1, k = h, l respectively.

Consistent with the return as daily price percentage
change yt = (Pt − Pt−1)/Pt−1 and Pk ,t , k = h, l , c
represents the high, low and closing price of day t .
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

SV model with buffer threshold and jumps for returns &

Gegenbauer long memory for volatility measures

Moreover, long memory may be confused with regime
changes in returns (Guegan, 2005).
The ACF of y2

t confirms the presence of oscillating long
memory for volatility.
Assign AR buffer threshold with jumps (ARBJ) to return yt
& Gegenbauer long memory (GLM) to volatility measure vt .

ARBJ: yt =

{
φ1yt−1 + ktqt + et , if Rt = 1,
φ2yt−1 + ktqt + et , if Rt = 0,

et ∼ N(0,eht )

SV: ht = α + β(ht−1 − α) + ηt , ηt ∼ N(0, σ2),

GLR: vt = (1− 2uB + B2)−d (γ + ht + ξt ), ξt ∼ N(0, σ2
v ),

Initial: h1 ∼ N
(
α, σ2

1−β2

)
& y1 ∼

N
(

k1q1
1−φ1

, eh1

1−φ2
1

)
, if R1 = 1,

N
(

k1q1
1−φ2

, eh1

1−φ2
2

)
, if R1 = 0,
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

SV model with buffer threshold with jumps for returns &

Gegenbauer long memory for volatility measures

Additionally, γ is the level of the volatility measure, and σ2
v

is the volatility of the volatility measure.

The buffer regime indicators

Rt =


1, if yt−τ ≤ rL,

Rt−1, if rL < yt−τ ≤ rU , (buffer region)
0, if yt−τ > rL.

The jump indicator qt ∈ {0,1} has probability
P(qt = 1) = πq and the jump size kt ∼ N (µk , σ

2
k ).

For leverage effect, γ1yt−1 + γ2|yt−1| can be added to ht
and/or vt models conditionally.
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

Buffer threshold

- -

� �
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Backward

no change
change after

crossing buffer
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

Data of 149 cryptocurrencies

A slightly different data with 149 cryptocurrencies ended
on Dec 31, 2017.

The ACFs of volatility measure vt for the top 6 by market
capitalisation on Dec 31, 2017 again show oscillations.
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

New results
rU r L φU φL u d α β σ2 γ σ2

v πq µk σ2
k

B 0.054 -0.20 0.022 -0.65 =1 0.001 -7.52 0.65 0.41 4.03 0.005 0.001 0.024 2.04
0.003 -0.19 0.021 -0.21 -0.77 0.211 -7.55 0.79 0.40 2.95 0.005 0.001 0.003 2.23

E 0.012 -0.13 0.038 -0.38 =1 0.000 -6.00 0.68 0.37 3.30 0.007 0.002 0.023 2.10
-0.001 -0.12 0.034 -0.36 -0.79 0.240 -6.08 0.82 0.37 2.38 0.006 0.002 0.020 2.10

X 0.019 -0.13 -0.030 -0.18 =1 0.001 -6.44 0.60 0.47 3.62 0.007 0.004 0.876 0.97
-0.041 -0.10 0.006 -0.18 -0.76 0.227 -6.51 0.76 0.48 2.68 0.005 0.002 1.144 1.29

L 0.072 -0.22 -0.021 -0.09 =1 0.001 -7.11 0.67 0.49 3.84 0.006 0.012 0.298 0.01
0.001 -0.08 -0.010 -0.09 -0.85 0.282 -7.21 0.84 0.50 2.32 0.005 0.010 0.259 0.02

D 0.016 -0.20 0.014 -0.36 =1 0.001 -6.12 0.63 0.32 3.48 0.006 0.004 0.596 0.43
-0.005 -0.20 0.003 -0.26 -0.75 0.328 -6.17 0.82 0.34 2.00 0.004 0.001 0.084 2.03

M -0.023 -0.19 -0.019 -0.45 =1 0.001 -5.74 0.61 0.25 3.36 0.005 0.002 0.424 0.92
0.003 -0.19 -0.017 -0.33 -0.86 0.173 -5.76 0.75 0.26 2.73 0.005 0.001 0.097 1.99

B: BTC, Bitcoin; E: ETH, Ethereum; X: XRP, Ripple; L: LTC, Litecoin; D: Dash; M: XMR, Monero

GLM for volatility measure consistently gives better fit than
standard LM and stronger LM.
It consistently gives lower γ, the level of volatility measure.
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

Ratio of DIC for GLM to standard LM models
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Extension I: buffer threshold with jumps for return & Gegenbauer long memory for volatility measure

Ratio of DIC for GLM to standard LM models

Majority, 118 (79%) of cryptocurrencies favour GLM with
oscillating ACF (ratio < 1).

They have less dampening ACF behaviour.

Bitcoin, Ethereum and Monero (in order) have higher ratio
& weaker preference for GLM.

Dash, Litecoin and Ripple (in order) have lower ration &
stronger preference for GLM.

Only Litecoin has both significant jump probability and
jump size.

Ripple again shows the lowest ratio so the most favour for
GLM.
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Multivariate skew variance gamma (MSVG)
distribution

Previous models consider one cryptocurrency at a time.
To model a basket jointly, we consider MSVG distribution
with pdf:

fVG(y) = 21−ν
π
− d

2|Σ|−
1
2
ν

d
2

Γ (ν)

K
ν− d

2

(√
[2ν + γ′Σ−1γ](y − µ)′Σ−1(y − µ)

)
exp
(

(y − µ)′Σ−1γ
)

[(2ν + γ′Σ−1γ)(y − µ)′Σ−1(y − µ)]
− 2ν−d

4 [1 + 1
2ν γ′Σ−1γ]

2ν−d
2

where
µ ∈ Rd is the location parameter,
Σ is a d × d positive definite symmetric scale matrix,
γ ∈ Rd is the skewness parameter,
ν > 0 is the shape parameter,
Γ(·) is the gamma function and
Kη(·) is the 2nd kind modified Bessel function with index η.
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

MSVG distribution

It has a mean-variance normal mixtures representation:

y i |λi ∼ Nd (µ+ γλi , λiΣ), λi ∼ G(ν, ν)

where G(α, β) is a Gamma distribution and y i are returns.

The mean and variance are:

E(Y i) = µ+ γ and Cov(Y i) = Σ + 1
νγγ

′.

When ν ≤ d
2 , the kurtosis is high and the pdf at µ becomes

unbounded.
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Densities of MSVG distribution
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Densities of MSVG distribution
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Data of four cryptocurrencies

We take Bitcoin, Ripple, Litecoin and Dash during May 21,
2014 to July 17, 2017 for the days when all 4 are observed.
Correlation:
Litecoin & Dash are most and Bitcoin & Dash are least.

Bitcoin Ripple Litecoin Dash
Bitcoin 1.000 0.088 0.131 0.010
Ripple 1.000 0.146 0.029
Litecoin 1.000 0.279
Dash 1.000

Summaries and P-value of Box-Pierce test for serial
correlation.

median mean SD skewness kurtosis Box-Pierce
Bitcoin −0.0018 0.0013 0.133 1.25 37.6 3.6e-9
Ripple −0.0022 0.0029 0.076 1.68 41.7 0.0015
Litecoin −0.0003 0.0012 0.055 0.40 23.7 0.1992
Dash −0.0021 0.0027 0.070 1.19 17.9 0.6779
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Plots of log price and return
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Vector ARMA-MSVG model

Vector ARMA-MSVG(p,q) model

y t = c + A1y t−1 + · · ·+ Apy t−p − B1ε̂t−1 − · · · − Bq ε̂t−q + εt

where
εt ∼ VGd (−γ,Σ,γ, ν), c ∈ Rd ,
A1, ...,Ap ∈ Rd × Rd are the AR coefficient matrices and
B1, ...,Bq ∈ Rd × Rd are the MA coefficient matrices.

The model can also be expressed as

y ′t = x ′tβ + (εt + γ)′

where
β′ =

(
c A1 · · · Ap B1 · · · Bq

)
is a d × [d(p + q) + 1] matrix,

x ′t =
(
1 y ′t−1 · · · y ′t−p −ε′t−1 · · · −ε′t−q

)
is a [d(p + q) + 1] vector,
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Parameter estimation for VARMA-MSVG model

The error terms εt depends on c,A1, ...,Ap,B1, ...,Bq so
the parameter estimation is complicated.

Two-stage linear approximation method:
Stage 1: Approximate the error terms by fitting the series

with a high order Vector AR model using
Expectation Conditional Maximisation (ECM).

Stage 2: Use these fitted errors to estimate other model
parameters.

AICc q = 0 q = 1 q = 2 q = 3
p = 0 −13287 −13325 −13374 −13357
p = 1 −13314 −13328 −13188
p = 2 −13384 −13187
p = 3 −13356
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Results for VARMA-MSVG model

Estimate and SE of VARMA-VG(2,0) model
Par Estimate SE
µT (

−0.004 −0.003 −0.001 −0.003
) (

0.002 0.001 0.001 0.001
)

A1


−0.191 0.063 0.054 0.079
−0.003 −0.131 0.013 0.004
−0.007 0.003 −0.072 0.007
−0.010 −0.039 −0.048 −0.013




0.031 0.043 0.059 0.083
0.010 0.026 0.036 0.036
0.011 0.014 0.026 0.011
0.014 0.024 0.026 0.018


A2


−0.069 0.075 −0.037 0.016
−0.026 −0.028 0.003 −0.038
0.003 0.043 −0.129 0.022
−0.049 0.077 −0.030 −0.084




0.006 0.034 0.048 0.037
0.002 0.022 0.025 0.014
0.002 0.012 0.021 0.010
0.002 0.021 0.025 0.010


Σ


0.0138 0.0010 0.0008 0.0004

0.0038 0.0005 0.0006
0.0021 0.0008

0.0051




0.0009 0.0002 0.0002 0.0003
0.0002 0.0001 0.0001

0.0001 0.0001
0.0003


γT (

0.007 0.006 0.002 0.006
) (

0.003 0.002 0.001 0.002
)

ν 0.7447 0.0333
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Results for VARMA-VG model

Volatility: Litecoin has lowest σ2& Bitcoin has highest σ2,
all agree with observation.

Skewness: Litecoin has lowest γ, agree with observation.

Persistence: Litecoin & Dash are weaker as they have
lower diagonals of A1.

Cross-dependence: Litecoin & Dash are more correlated,
again agree with observation and previous result.

Leptokurtosis: as ν < d/2 = 2, the density is unbounded.
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Extension II: Vector ARMA with multivariate skew variance gamma distribution

Model-fit: black observed; green VG; red normal

black line: observed

green dash line: fitted by VG

red dotted line: fitted by normal

Consistent kurtosis with same df: Too restrictive.
Ripple and Litecoin have higher peak. Normal is worst.
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Conclusion

Conclusion

Interestingly, technological (not economic) factor
distinguishes the behaviour of cryptocurrency.

Faster transaction gives lower liquidity risk, hence
lower leverage, stronger GLM and lighter tails.

MSVG distribution can also show cross dependency apart
from technological factor.

Two groups:

Faster transaction group: Litecoin, Dash & Ethereum.
Slower transaction group: Bitcoin, NEM & Monero.

Ripple is very distinct as the only currency with no over
night risk.



Advanced statistical models for cryptocurrency research

Conclusion

Future research

Extension I: Include leverage effect and heavy tail
distribution, eg t & VG. Complicated as with mixing
variables, there will be many model parameters.

Extension II: The VARMA-MSVG provides reasonable fit
to the 4 cryptocurrencies jointly. Some possible extensions:

Include ARIMA, ARFIMA or GLM and allow different df.
Challenging!

Add volatility measures in a 2-stage model:
Stage 1: Model volatilities using CARR model and then
Stage 2: Insert fitted volatilities as σ̂2

t,ij to estimate the
multivariate model.

Improve the efficiency of volatility measures with various
types.

There are many promising model choices to explore.
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Garman Klass volatility measure and return

Garman Klass (1980) proposed unbiased volatility measure:

σ2
GK = 0.5(Ht − Lt )

2 − (2 ln 2− 1)(Ct −Ot )

The CARR model for volatility measure and return model are

CARR: VGK = λtηt , ηt ∼ GB2(a,bt (λt ),p,q)

CARR: λt = β0 + β11vt−1 + β21λt−1+β31vt−1λt−1+β4|yt−1|+ β5yt−1

Return: yt = µt + λ̂tεt , εt ∼ VG(0, ν)
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