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Introduction and preliminaries

Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.

=⇒ Extract statistically energies carried by some specific frequency bands.

=⇒ This specific bands can be defined by experts, standards, history...

=⇒ Or defined statistically by blind or unsupervised clustering or detection...

How to? Use localised and pseudo-localised wavelets to analyze the frequency
components that modulate the observed signal.

=⇒ Use spectral representation of locally stationary fractional processes.

=⇒ An example with Gabor wavelets will be investigated.

Illustration: present a worked example and other possible future applications...
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Notation and Models...

Many natural phenomena may be modeled by a local stationary process X (t) of the form:

X (t) = µ(t) +

∫
R
e itξ
√
f (t, ξ)dW (ξ),

The spectral density ξ 7→ f (t, ξ) is even positive and piecewise constant i.e. there exist
τ1, . . . , τK such that f (t, ξ) = fi (ξ) for t ∈ [τi , τi+1 [

The function t 7→ µ(t) is also piecewise constant for eventually another partition.

=⇒ The process X (t) is localized in time and frequency...

The purpose is to extract energy corresponding to a given frequency band B = [ω1, ω2].

The wavelet method is the most suitable in this setting
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The notion of localised energy...

Let ψ be a filter having a Fourier transform concentrated on B = [ω1, ω2] and let us define :

W (s) =

∫
R
ψ(t − s) X (t) dt

=⇒ The application s 7−→ |W (s)|2 gives the energy associated with the band [ω1, ω2] and
localized around instants s

The purpose is to find a such wavelet ψ and investigate the shape or profile of the
corresponding |W (s)|2.

Ideally We would have liked to choose ψ as compact support in time and frequency domain ...

−→ unfortunately it is impossible

The alternative is to introduce the concept of pseudo compactness of the support ....
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The concept of the ρ-pseudo compact support

Let 0 < ρ < 1 and g ∈ L2(R).

We will say that g have a ρ-pseudo support I if∫
I |g(t)|2dt∫
R |g(t)|2dt

= ρ

=⇒ In practical areas it is enough to focus on ρ-pseudo supports with ρ relatively close to 1.

There is many reasons for that:

In almost all real applications the Fourier transform vanish near infinity.

In statistical and real data applications, the fourier transform is only approximated on
finite support

Some times, it is enough to explain a certain percentage of the energy.
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A simple general framework example

Let ψ be a fixed filter, a kind of a mother wavelet with,

A temporal support [L1, L2] i.e. ψ(t) = 0 for t /∈ [L1, L2]

And a frequency ρ-pseudo support [Λ1, Λ2]

=⇒ For a given frequency band, B = [ω1, ω2], we can build a wavelet having a targeted
ρ-pseudo support B.

Indeed, modulation and scaling, it will have the form :

ψ1(t) = e iηtψ(λt)

The underlying modulation parameter η and the scaling parameter λ will depends on :

The targeted band B bounds ω1 and ω2.

The mother wavelets ψ parameters Λ1 and Λ2.
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A simple general framework example

Using the fact that:

ψ̂1(ξ) = ψ̂(
ξ − η
λ

)

We deduce then that :

ρ− pseudo supp of ψ̂1 = η + λ× ρ− pseudo supp of ψ̂

A simple algebra imply that:

λ =
ω2 − ω1

Λ2 − Λ1

η =
ω1 + ω2

2
− (ω2 − ω1)

Λ2 + Λ1

Λ2 − Λ1

In addition the temporal support of ψ1 is given by:[
Λ2 − Λ1

ω2 − ω1
L1 ,

Λ2 − Λ1

ω2 − ω1
L2

]
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Symmeric examples: Gabor wavelets

The Gabor mother wavelet through the Gauss- Laplace function:

g(t/σ) =
1

(σ2π)1/4 e
− t2

2σ2

It is a symmetric function, well implemented and easy to manipulate in practice.
It has the same ρ-pseudo support of the form [−L, L] in both spectral and time domain
for example for L = 3.5 the ρ ≈ 0.9995 almost equal to 1.

If we take
ψ(t) = e iηt .g(t/σ)

Then we have,
ψ̂(t) = ĝ(ξ − η), ĝ(ξ) = (4πσ2)1/4e

−σ2ξ2
2

We fit the wavelet ψ to frequency domain ρ-pseudo support [ω1, ω2]

We obtain the parameters η and σ as

η =
ω1 + ω2

2
and σ =

2L
ω2 − ω1

In addition |ρ pseudo supp ψ| =
4L2

ω2 − ω1
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A worked example: physiological data

Let us denote (ti )i=1,...,N , instants
corresponding to R pics. We consider the
RR-time series: X (ti ) = (ti − ti−1).

Cardiologists are interested in the analysis of the time series (X (t))t in two frequency bands:

The low Frequency (LF) band [ω1, ω2] = [0.04 Hz , 0.15Hz ] associated with
orthosympathic system (accelerator)

The High frequency (HF) band [ω2, ω3] = [0.15 Hz , 0.5Hz ] linked to the
parasympathetic system (brake)

These frequency bands are proposed by extensive research summarized by the Task force
(1996): the conclusion is that HF and LF energies are good indicators of stress

Hence the importance of extracting HF and LF energies in this
problem.
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These frequency bands are proposed by extensive research summarized by the Task force
(1996): the conclusion is that HF and LF energies are good indicators of stress

Hence the importance of extracting HF and LF energies in this
problem.
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A worked example: physiological data
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A sample observed signal
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Discriminant features construction
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Discriminant features construction

We will be interested in the forthcoming variables:

The variable θR

i − θ
R

i−1 which represents the time lapse where the RR signal has a
stationary behaviour.

The variable θH

i − θ
H

i−1 which represents the duration of the i th level of the HF energy.

=⇒ This duration can be seen as the duration where only the parasympathetic (braking)
system is activated and has a fixed regime.

The variable θL

i − θ
L

i−1 which represents the duration of the i th level of the LF energy.

=⇒ This duration can be seen as the lapse of time where only the orthosympathetic
(acceleration) system is in action and has established a fixed regime.

the variable τi − τi−1 which represents the inter RR,HF and LF durations of the i th level
of the HF energy before one of the two systems switches to another state.
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Discriminant features table

States ∆θR ∆θL ∆θH ∆τ RR LF HF

1 θR

2 − θ
R

1 θL

2 − θ
L

1 θH

2 − θ
H

1 τ2 − τ1 RR1 LF1 HF1

...
...

...
...

...
...

...

M-1 θR

M − θ
R

M−1 θL

M − θ
L

M−1 θH

M − θ
H

M−1 τM − τM−1 RRM−1 LFM−1 HFM−1

M T − θR

M T − θL

M T − θH

M−1 T − τM RRM LFM HFM
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Clustering projection of features
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An example of clustered signal
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An other example on animals behaviour
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Other possible applications

Application other physiological signals, and behavioural analysis...

Pattern detection in some complex temporal signals.

Event and Fault detection in some complex power mechanical systems.

Detection of some hidden structures, noises, in speech signals.
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