A theoretical framework for extracting some temporal and frequency features in non-stationary fractional signals.

N. Azzaoui, A. Guillin, G. W. Peters, T. Matsui

STM 2018: International Workshop on Spatial and Temporal Modeling

ISM: Institute of Statistical Mathematics Tokyo Japan

• **Goal:** Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.
 - \implies This specific bands can be defined by experts, standards, history...

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.
 - \implies This specific bands can be defined by experts, standards, history...
 - \implies Or defined statistically by blind or unsupervised clustering or detection...

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.
 - \implies This specific bands can be defined by experts, standards, history...
 - \implies Or defined statistically by blind or unsupervised clustering or detection...
- **How to?** Use localised and <u>pseudo-localised</u> wavelets to analyze the frequency components that modulate the observed signal.

 \implies Use spectral representation of locally stationary fractional processes.

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.
 - \implies This specific bands can be defined by experts, standards, history...
 - \implies Or defined statistically by blind or unsupervised clustering or detection...
- **How to?** Use localised and <u>pseudo-localised</u> wavelets to analyze the frequency components that modulate the observed signal.
 - \implies Use spectral representation of locally stationary fractional processes.
 - \implies An example with Gabor wavelets will be investigated.

- Goal: Detect <u>special features</u> by analyzing specific frequency bands and/or temporal variability.
- **The idea:** Most natural phenomena contain temporal or frequency signatures which are linked to their intrinsic behaviour.
 - \implies Extract statistically energies carried by some specific frequency bands.
 - \implies This specific bands can be defined by experts, standards, history...
 - \implies Or defined statistically by blind or unsupervised clustering or detection...
- **How to?** Use localised and <u>pseudo-localised</u> wavelets to analyze the frequency components that modulate the observed signal.
 - \Longrightarrow Use spectral representation of locally stationary fractional processes.
 - \implies An example with Gabor wavelets will be investigated.
- Illustration: present a worked example and other possible future applications...

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

• The spectral density $\xi \mapsto f(t, \xi)$ is even positive and piecewise constant i.e. there exist τ_1, \ldots, τ_K such that $f(t, \xi) = f_i(\xi)$ for $t \in [\tau_i, \tau_{i+1}]$

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

- The spectral density $\xi \mapsto f(t, \xi)$ is even positive and piecewise constant i.e. there exist τ_1, \ldots, τ_K such that $f(t, \xi) = f_i(\xi)$ for $t \in [\tau_i, \tau_{i+1}]$
- The function $t\mapsto \mu(t)$ is also piecewise constant for eventually another partition.

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

- The spectral density $\xi \mapsto f(t, \xi)$ is even positive and piecewise constant i.e. there exist τ_1, \ldots, τ_K such that $f(t, \xi) = f_i(\xi)$ for $t \in [\tau_i, \tau_{i+1}]$
- The function $t\mapsto \mu(t)$ is also piecewise constant for eventually another partition.
- \implies The process X(t) is localized in time and frequency...

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

- The spectral density $\xi \mapsto f(t, \xi)$ is even positive and piecewise constant i.e. there exist τ_1, \ldots, τ_K such that $f(t, \xi) = f_i(\xi)$ for $t \in [\tau_i, \tau_{i+1}]$
- The function $t\mapsto \mu(t)$ is also piecewise constant for eventually another partition.
- \implies The process X(t) is localized in time and frequency...

The purpose is to extract energy corresponding to a given frequency band $\mathbb{B} = [\omega_1, \omega_2]$.

$$X(t) = \mu(t) + \int_{\mathbb{R}} e^{it\xi} \sqrt{f(t, \xi)} dW(\xi),$$

- The spectral density $\xi \mapsto f(t, \xi)$ is even positive and piecewise constant i.e. there exist τ_1, \ldots, τ_K such that $f(t, \xi) = f_i(\xi)$ for $t \in [\tau_i, \tau_{i+1}]$
- The function $t\mapsto \mu(t)$ is also piecewise constant for eventually another partition.
- \implies The process X(t) is localized in time and frequency...

The purpose is to extract energy corresponding to a given frequency band $\mathbb{B} = [\omega_1, \omega_2]$.

The wavelet method is the most suitable in this setting

$$W(s) = \int_{\mathbb{R}} \psi(t-s) X(t) dt$$

 \implies The application $s \mapsto |W(s)|^2$ gives the energy associated with the band $[\omega_1, \omega_2]$ and localized around instants s

$$W(s) = \int_{\mathbb{R}} \psi(t-s) X(t) dt$$

 \implies The application $s \mapsto |W(s)|^2$ gives the energy associated with the band $[\omega_1, \omega_2]$ and localized around instants s

The purpose is to find a such wavelet ψ and investigate the shape or *profile* of the corresponding $|W(s)|^2$.

$$W(s) = \int_{\mathbb{R}} \psi(t-s) X(t) dt$$

 \implies The application $s \mapsto |W(s)|^2$ gives the energy associated with the band $[\omega_1, \omega_2]$ and localized around instants s

The purpose is to find a such wavelet ψ and investigate the shape or *profile* of the corresponding $|W(s)|^2$.

Ideally We would have liked to choose ψ as compact support in time and frequency domain ...

$$W(s) = \int_{\mathbb{R}} \psi(t-s) X(t) dt$$

 \implies The application $s \mapsto |W(s)|^2$ gives the energy associated with the band $[\omega_1, \omega_2]$ and localized around instants s

The purpose is to find a such wavelet ψ and investigate the shape or *profile* of the corresponding $|W(s)|^2$.

Ideally We would have liked to choose ψ as compact support in time and frequency domain \ldots

 \longrightarrow unfortunately it is impossible

$$W(s) = \int_{\mathbb{R}} \psi(t-s) X(t) dt$$

 \implies The application $s \mapsto |W(s)|^2$ gives the energy associated with the band $[\omega_1, \omega_2]$ and localized around instants s

The purpose is to find a such wavelet ψ and investigate the shape or *profile* of the corresponding $|W(s)|^2$.

Ideally We would have liked to choose ψ as compact support in time and frequency domain \ldots

 \longrightarrow unfortunately it is impossible

The alternative is to introduce the concept of pseudo compactness of the support

We will say that g have a ρ -pseudo support $\mathbb I$ if

$$\frac{\int_{\mathbb{I}} |g(t)|^2 dt}{\int_{\mathbb{R}} |g(t)|^2 dt} = \rho$$

We will say that g have a ρ -pseudo support $\mathbb I$ if

$$\frac{\int_{\mathbb{I}} |g(t)|^2 dt}{\int_{\mathbb{R}} |g(t)|^2 dt} = \rho$$

 \implies In practical areas it is enough to focus on ρ -pseudo supports with ρ relatively close to 1.

We will say that g have a ρ -pseudo support $\mathbb I$ if

$$rac{\int_{\mathbb{I}}|g(t)|^{2}dt}{\int_{\mathbb{R}}|g(t)|^{2}dt}=
ho$$

 \implies In practical areas it is enough to focus on ρ -pseudo supports with ρ relatively close to 1. There is many reasons for that:

• In almost all real applications the Fourier transform vanish near infinity.

We will say that g have a $\rho\text{-pseudo support}~\mathbb{I}$ if

$$\frac{\int_{\mathbb{I}} |g(t)|^2 dt}{\int_{\mathbb{R}} |g(t)|^2 dt} = \rho$$

 \implies In practical areas it is enough to focus on ρ -pseudo supports with ρ relatively close to 1. There is many reasons for that:

- In almost all real applications the Fourier transform vanish near infinity.
- In statistical and real data applications, the fourier transform is only approximated on finite support

We will say that g have a ρ -pseudo support $\mathbb I$ if

$$\frac{\int_{\mathbb{I}} |g(t)|^2 dt}{\int_{\mathbb{R}} |g(t)|^2 dt} = \rho$$

 \implies In practical areas it is enough to focus on ρ -pseudo supports with ρ relatively close to 1. There is many reasons for that:

- In almost all real applications the Fourier transform vanish near infinity.
- In statistical and real data applications, the fourier transform is only approximated on finite support
- Some times, it is enough to explain a certain percentage of the energy.

We will say that g have a ρ -pseudo support $\mathbb I$ if

$$\frac{\int_{\mathbb{I}} |g(t)|^2 dt}{\int_{\mathbb{R}} |g(t)|^2 dt} = \rho$$

 \implies In practical areas it is enough to focus on ρ -pseudo supports with ρ relatively close to 1. There is many reasons for that:

- In almost all real applications the Fourier transform vanish near infinity.
- In statistical and real data applications, the fourier transform is only approximated on finite support
- Some times, it is enough to explain a certain percentage of the energy.

A simple general framework example

Let ψ be a fixed filter, a kind of a *mother wavelet* with,

- A temporal support $[L_1, L_2]$ i.e. $\psi(t) = 0$ for $t \notin [L_1, L_2]$
- And a frequency ρ -pseudo support [Λ_1, Λ_2]

 \implies For a given frequency band, $\mathbb{B} = [\omega_1, \omega_2]$, we can build a wavelet having a targeted ρ -pseudo support \mathbb{B} .

Let ψ be a fixed filter, a kind of a *mother wavelet* with,

- A temporal support $[L_1, L_2]$ i.e. $\psi(t) = 0$ for $t \notin [L_1, L_2]$
- And a frequency ρ -pseudo support [Λ_1, Λ_2]

 \implies For a given frequency band, $\mathbb{B} = [\omega_1, \omega_2]$, we can build a wavelet having a targeted ρ -pseudo support \mathbb{B} .

Indeed, modulation and scaling, it will have the form :

 $\psi_1(t) = e^{i\eta t} \psi(\lambda t)$

Let ψ be a fixed filter, a kind of a *mother wavelet* with,

- A temporal support $[L_1, L_2]$ i.e. $\psi(t) = 0$ for $t \notin [L_1, L_2]$
- And a frequency ρ -pseudo support [Λ_1, Λ_2]

 \implies For a given frequency band, $\mathbb{B} = [\omega_1, \omega_2]$, we can build a wavelet having a targeted ρ -pseudo support \mathbb{B} .

Indeed, modulation and scaling, it will have the form :

 $\psi_1(t) = e^{i\eta t} \psi(\lambda t)$

The underlying modulation parameter η and the scaling parameter λ will depends on :

- The targeted band $\mathbb B$ bounds ω_1 and ω_2 .
- The mother wavelets ψ parameters Λ_1 and Λ_2 .

A simple general framework example

Using the fact that:

$$\hat{\psi}_1(\xi) = \hat{\psi}(\frac{\xi - \eta}{\lambda})$$

We deduce then that :

$$\rho-\text{pseudo supp of } \hat{\psi_1}=\eta+\lambda\times\rho-\text{pseudo supp of } \hat{\psi}$$

A simple algebra imply that:

$$\lambda = \frac{\omega_2 - \omega_1}{\Lambda_2 - \Lambda_1}$$
$$\eta = \frac{\omega_1 + \omega_2}{2} - (\omega_2 - \omega_1) \frac{\Lambda_2 + \Lambda_1}{\Lambda_2 - \Lambda_1}$$

A simple general framework example

Using the fact that:

$$\hat{\psi_1}(\xi) = \hat{\psi}(rac{\xi - \eta}{\lambda})$$

We deduce then that :

$$\rho-\textit{pseudo supp of } \hat{\psi_1} = \eta + \lambda \times \rho - \textit{pseudo supp of } \hat{\psi}$$

A simple algebra imply that:

$$\lambda = \frac{\omega_2 - \omega_1}{\Lambda_2 - \Lambda_1}$$
$$\eta = \frac{\omega_1 + \omega_2}{2} - (\omega_2 - \omega_1) \frac{\Lambda_2 + \Lambda_1}{\Lambda_2 - \Lambda_1}$$

In addition the temporal support of ψ_1 is given by:

$$\begin{bmatrix} \underline{\Lambda_2 - \Lambda_1} \\ \omega_2 - \omega_1 \end{bmatrix} L_1 \quad , \quad \frac{\underline{\Lambda_2 - \Lambda_1}}{\omega_2 - \omega_1} L_2 \end{bmatrix}$$

Azzaoui and al...

The Gabor mother wavelet through the Gauss- Laplace function:

$$g(t/\sigma) = \frac{1}{(\sigma^2 \pi)^{1/4}} e^{-\frac{t^2}{2\sigma^2}}$$

The Gabor mother wavelet through the Gauss- Laplace function:

$$g(t/\sigma) = rac{1}{(\sigma^2 \pi)^{1/4}} e^{-rac{t^2}{2\sigma^2}}$$

- It is a symmetric function, well implemented and easy to manipulate in practice.
- It has the same ρ -pseudo support of the form [-L, L] in both spectral and time domain
- for example for L= 3.5 the $\rho\approx$ 0.9995 almost equal to 1.

The Gabor mother wavelet through the Gauss- Laplace function:

$$g(t/\sigma) = rac{1}{(\sigma^2 \pi)^{1/4}} e^{-rac{t^2}{2\sigma^2}}$$

- It is a symmetric function, well implemented and easy to manipulate in practice.
- It has the same ρ -pseudo support of the form [-L, L] in both spectral and time domain
- for example for L= 3.5 the $\rho\approx$ 0.9995 almost equal to 1.

If we take

$$\psi(t) = e^{i\eta t} g(t/\sigma)$$

Then we have,

$$\hat{\psi}(t) = \hat{g}(\xi - \eta), \; \hat{g}(\xi) = (4\pi\sigma^2)^{1/4} e^{\frac{-\sigma^2\xi^2}{2}}$$

The Gabor mother wavelet through the Gauss- Laplace function:

$$g(t/\sigma) = rac{1}{(\sigma^2 \pi)^{1/4}} e^{-rac{t^2}{2\sigma^2}}$$

- It is a symmetric function, well implemented and easy to manipulate in practice.
- It has the same ρ -pseudo support of the form [-L, L] in both spectral and time domain
- for example for L=3.5 the $\rho\approx 0.9995$ almost equal to 1.

If we take

$$\psi(t) = e^{i\eta t} g(t/\sigma)$$

Then we have,

$$\hat{\psi}(t) = \hat{g}(\xi - \eta), \; \hat{g}(\xi) = (4\pi\sigma^2)^{1/4} e^{\frac{-\sigma^2\xi^2}{2}}$$

We fit the wavelet ψ to frequency domain ρ -pseudo support $[\omega_1, \omega_2]$

The Gabor mother wavelet through the Gauss- Laplace function:

$$g(t/\sigma) = rac{1}{(\sigma^2 \pi)^{1/4}} e^{-rac{t^2}{2\sigma^2}}$$

- It is a symmetric function, well implemented and easy to manipulate in practice.
- It has the same ρ -pseudo support of the form [-L, L] in both spectral and time domain
- for example for L= 3.5 the $\rho\approx$ 0.9995 almost equal to 1.

If we take

$$\psi(t) = e^{i\eta t} g(t/\sigma)$$

Then we have,

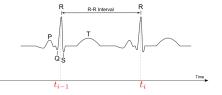
$$\hat{\psi}(t) = \hat{g}(\xi - \eta), \ \hat{g}(\xi) = (4\pi\sigma^2)^{1/4} e^{\frac{-\sigma^2\xi^2}{2}}$$

We fit the wavelet ψ to frequency domain ρ -pseudo support $[\omega_1, \omega_2]$ We obtain the parameters η and σ as

$$\eta = \frac{\omega_1 + \omega_2}{2} \quad \text{and} \quad \sigma = \frac{2L}{\omega_2 - \omega_1}$$

In addition $|\rho \text{ pseudo supp } \psi| = \frac{4L^2}{\omega_2 - \omega_1}$

Let us denote $(t_i)_{i=1,...,N}$, instants corresponding to R pics. We consider the *RR*-time series: $X(t_i) = (t_i - t_{i-1})$.

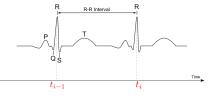


Let us denote $(t_i)_{i=1,...,N}$, instants corresponding to R pics. We consider the *RR*-time series: $X(t_i) = (t_i - t_{i-1})$.

Cardiologists are interested in the analysis of the time series $(X(t))_t$ in two frequency bands:

• The low Frequency (LF) band $[\omega_1, \omega_2] = [0.04 \text{ Hz}, 0.15 \text{Hz}]$ associated with orthosympathic system (accelerator)

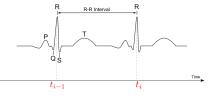
Let us denote $(t_i)_{i=1,...,N}$, instants corresponding to R pics. We consider the *RR*-time series: $X(t_i) = (t_i - t_{i-1})$.



Cardiologists are interested in the analysis of the time series $(X(t))_t$ in two frequency bands:

- The low Frequency (LF) band $[\omega_1, \omega_2] = [0.04 \text{ Hz}, 0.15 \text{Hz}]$ associated with orthosympathic system (accelerator)
- The High frequency (HF) band $[\omega_2, \omega_3] = [0.15 \text{ Hz}, 0.5 \text{Hz}]$ linked to the parasympathetic system (brake)

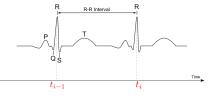
Let us denote $(t_i)_{i=1,...,N}$, instants corresponding to R pics. We consider the *RR*-time series: $X(t_i) = (t_i - t_{i-1})$.



Cardiologists are interested in the analysis of the time series $(X(t))_t$ in two frequency bands:

- The low Frequency (LF) band $[\omega_1, \omega_2] = [0.04 \text{ Hz}, 0.15 \text{Hz}]$ associated with orthosympathic system (accelerator)
- The High frequency (HF) band $[\omega_2, \omega_3] = [0.15 \text{ Hz}, 0.5 \text{Hz}]$ linked to the parasympathetic system (brake)
- These frequency bands are proposed by extensive research summarized by the Task force (1996): the conclusion is that HF and LF energies are good indicators of stress

Let us denote $(t_i)_{i=1,...,N}$, instants corresponding to R pics. We consider the *RR*-time series: $X(t_i) = (t_i - t_{i-1})$.

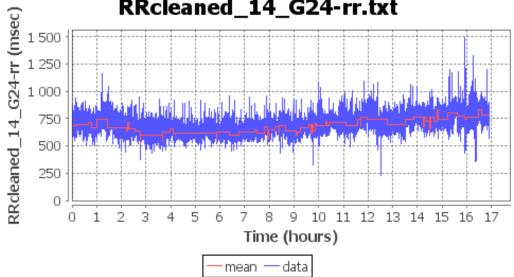


Cardiologists are interested in the analysis of the time series $(X(t))_t$ in two frequency bands:

- The low Frequency (LF) band $[\omega_1, \omega_2] = [0.04 \text{ Hz}, 0.15 \text{Hz}]$ associated with orthosympathic system (accelerator)
- The High frequency (HF) band $[\omega_2, \omega_3] = [0.15 \text{ Hz}, 0.5 \text{Hz}]$ linked to the parasympathetic system (brake)
- These frequency bands are proposed by extensive research summarized by the Task force (1996): the conclusion is that HF and LF energies are good indicators of stress

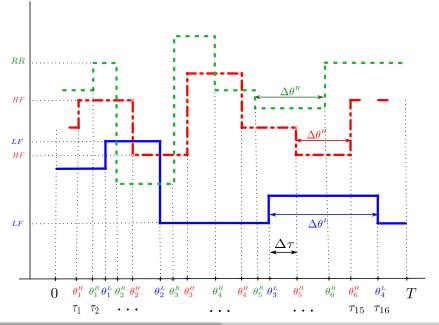
Hence the importance of extracting HF and LF energies in this

problem.



RRcleaned_14_G24-rr.txt

Discriminant features construction



Azzaoui and al...

We will be interested in the forthcoming variables:

- The variable $\theta_i^{\rm R} \theta_{i-1}^{\rm R}$ which represents the time lapse where the RR signal has a stationary behaviour.
- The variable $\theta_i^{H} \theta_{i-1}^{H}$ which represents the duration of the *i*th level of the HF energy.

 \Longrightarrow This duration can be seen as the duration where only the parasympathetic (braking) system is activated and has a fixed regime.

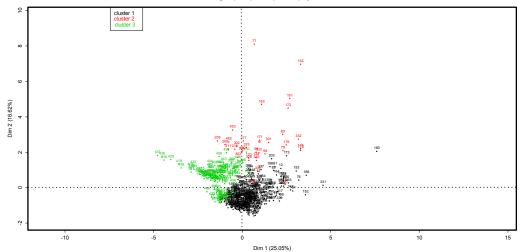
• The variable $\theta_i^{L} - \theta_{i-1}^{L}$ which represents the duration of the i^{th} level of the LF energy.

 \implies This duration can be seen as the lapse of time where only the orthosympathetic (acceleration) system is in action and has established a fixed regime.

• the variable $\tau_i - \tau_{i-1}$ which represents the inter *RR*, *HF* and *LF* durations of the *i*th level of the HF energy before one of the two systems switches to another state.

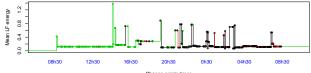
States	$\Delta heta^{\scriptscriptstyle R}$	$\Delta heta^{\scriptscriptstyle L}$	$\Delta heta^{\scriptscriptstyle H}$	Δau	RR	LF	HF
1	$ heta_2^{\scriptscriptstyle R} - heta_1^{\scriptscriptstyle R}$	$ heta_2^{\scriptscriptstyle L} - heta_1^{\scriptscriptstyle L}$	$ heta_2^{\scriptscriptstyle H} - heta_1^{\scriptscriptstyle H}$	$ au_2 - au_1$	RR_1	LF_1	HF_1
	÷	:	÷	÷	÷	÷	÷
M-1	$\theta^{\scriptscriptstyle R}_M - \theta^{\scriptscriptstyle R}_{M-1}$	$\theta_M^{\scriptscriptstyle L} - \theta_{M-1}^{\scriptscriptstyle L}$	$\theta_M^{\scriptscriptstyle H} - \theta_{M-1}^{\scriptscriptstyle H}$	$\tau_M - \tau_{M-1}$	RR_{M-1}	LF_{M-1}	HF_{M-1}
М	$T - \theta_M^R$	$T - \theta_M^{\scriptscriptstyle L}$	$T - \theta_{M-1}^{\scriptscriptstyle H}$	$T - \tau_M$	RR_M	LF _M	HF_M

Clustering projection of features

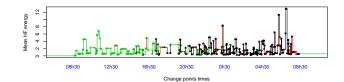


States clustering on principal components projections of table 1

An example of clustered signal



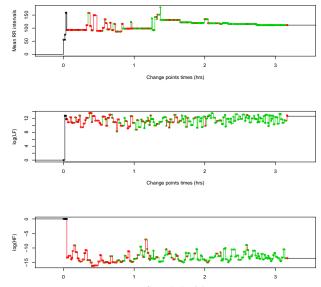
Change points times



Azzaoui and al...

An other example on animals behaviour

mean cleaned 16-17-07-2012.txt



Change points times (hrs)

Azzaoui and al...

- Application other physiological signals, and behavioural analysis...
- Pattern detection in some complex temporal signals.
- Event and Fault detection in some complex power mechanical systems.
- Detection of some hidden structures, noises, in speech signals.