A theoretical framework for extracting some temporal and frequency
features in non-stationary fractional signals.

N. Azzaoui, A. Guillin, G. W. Peters, T. Matsui

STM 2018: International Workshop on Spatial and Temporal Modeling

ISM: Institute of Statistical Mathematics Tokyo Japan

GOOoD INTERNATIONAL
't'ﬁ UNIVERSITY L
GIWATT g |unversiry ; In

HERIOT T as s BT esarch Organizstion of Infarmtion and Systems L
\/ p &) The Institute of Statistical Mathematics

UNIVERSITY

Azzaoui and al...



o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.



o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.



o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.

— Extract statistically energies carried by some specific frequency bands.



o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.
— Extract statistically energies carried by some specific frequency bands.

= This specific bands can be defined by experts, standards, history...



o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.
—— Extract statistically energies carried by some specific frequency bands.
= This specific bands can be defined by experts, standards, history...

= Or defined statistically by blind or unsupervised clustering or detection...



Introduction and preliminaries

o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.
Extract statistically energies carried by some specific frequency bands.
This specific bands can be defined by experts, standards, history...

Or defined statistically by blind or unsupervised clustering or detection...

o How to? Use localised and pseudo-localised wavelets to analyze the frequency
components that modulate the observed signal.

Use spectral representation of locally stationary fractional processes.

Azzaoui and al...



Introduction and preliminaries

o Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.
Extract statistically energies carried by some specific frequency bands.
This specific bands can be defined by experts, standards, history...

Or defined statistically by blind or unsupervised clustering or detection...

o How to? Use localised and pseudo-localised wavelets to analyze the frequency
components that modulate the observed signal.

Use spectral representation of locally stationary fractional processes.

An example with Gabor wavelets will be investigated.

Azzaoui and al...



Introduction and preliminaries

(]

Goal: Detect special features by analyzing specific frequency bands and/or temporal
variability.

o The idea: Most natural phenomena contain temporal or frequency signatures which are
linked to their intrinsic behaviour.
Extract statistically energies carried by some specific frequency bands.
This specific bands can be defined by experts, standards, history...

Or defined statistically by blind or unsupervised clustering or detection...

o How to? Use localised and pseudo-localised wavelets to analyze the frequency
components that modulate the observed signal.

Use spectral representation of locally stationary fractional processes.

An example with Gabor wavelets will be investigated.

o lllustration: present a worked example and other possible future applications...
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Notation and Models...

Many natural phenomena may be modeled by a local stationary process X(t) of the form:
X() = u(0) + | V/FE Daw(e),
R

o The spectral density £ — f(t, &) is even positive and piecewise constant i.e. there exist
T1, ..., Tk such that f(t, &) = (&) for t € [, Tit1 [

o The function t — ((t) is also piecewise constant for eventually another partition.

The process X(t) is localized in time and frequency...
The purpose is to extract energy corresponding to a given frequency band B = [w, ws].

The wavelet method is the most suitable in this setting
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The notion of localised energy...

Let 1) be a filter having a Fourier transform concentrated on B = [w;, w»] and let us define :
W(s) = / Wt — s) X(t) dt
R

The application s — |W(s)|? gives the energy associated with the band [wy, ws] and
localized around instants s

The purpose is to find a such wavelet ¢ and investigate the shape or profile of the
corresponding |W(s)|?.

Ideally We would have liked to choose 1 as compact support in time and frequency domain ...

— unfortunately it is impossible

The alternative is to introduce the concept of pseudo compactness of the support ....
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A simple general framework example

Let 1) be a fixed filter, a kind of a mother wavelet with,

o A temporal support [L1, Lp]i.e. ¢(t) =0 for t ¢ [Ly, Ls]
o And a frequency p-pseudo support [A1, A;]

For a given frequency band, B = [w;, wa], we can build a wavelet having a targeted
p-pseudo support B.

Indeed, modulation and scaling, it will have the form :

Di(t) = eMap(At)

The underlying modulation parameter 7 and the scaling parameter A will depends on :

o The targeted band B bounds w; and ws.

o The mother wavelets 1) parameters A; and A,.
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Using the fact that:
. L€
di(©) = ()
We deduce then that :

p — pseudo supp of hy = n+ \ X p — pseudo supp of P
A simple algebra imply that:

W2 — W1
A=
A — M
L witw (s —w )/\2+/\1
n= 5 2 1 -
In addition the temporal support of 1 is given by:
A — A N —A
2 L, ’ 2 1,
Wy — W1 Wy — W1
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Symmeric examples: Gabor wavelets

The Gabor mother wavelet through the Gauss- Laplace function:

1 2

g(t/o) = We 202

o It is a symmetric function, well implemented and easy to manipulate in practice.
o It has the same p-pseudo support of the form [—L, L] in both spectral and time domain

o for example for L = 3.5 the p =~ 0.9995 almost equal to 1.
If we take .
U(t) = e .g(t/0)
Then we have, .
—o2¢

D(t) = &(€ —n), &(€) = (4m0?)*e ™=

We fit the wavelet ¢ to frequency domain p-pseudo support [w1,ws]

We obtain the parameters 77 and o as
w1 + w» 2L
=——" and o= —-"
2 Wy — W1
412
W2 — Wy
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A worked example: physiological data

Let us denote (t;)i=1,... n, instants —
corresponding to R pics. We consider the M
RR-time series: X(t;) = (t; — ti—1).

Cardiologists are interested in the analysis of the time series (X(t)); in two frequency bands:

o The low Frequency (LF) band [wy,w,] = [0.04 Hz, 0.15Hz] associated with
orthosympathic system (accelerator)

o The High frequency (HF) band [wo,ws] = [0.15 Hz, 0.5HZ] linked to the
parasympathetic system (brake)

o These frequency bands are proposed by extensive research summarized by the Task force
(1996): the conclusion is that HF and LF energies are good indicators of stress
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A worked example: physiological data

Let us denote (t;)i=1,... n, instants —
corresponding to R pics. We consider the M
RR-time series: X(t;) = (t; — ti—1).

Cardiologists are interested in the analysis of the time series (X(t)); in two frequency bands:

o The low Frequency (LF) band [wy,w,] = [0.04 Hz, 0.15Hz] associated with
orthosympathic system (accelerator)

o The High frequency (HF) band [wo,ws] = [0.15 Hz, 0.5HZ] linked to the
parasympathetic system (brake)

o These frequency bands are proposed by extensive research summarized by the Task force
(1996): the conclusion is that HF and LF energies are good indicators of stress

Hence the importance of extracting HF and LF energies in this

problem.
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Discriminant features construction

We will be interested in the forthcoming variables:

Qo

The variable 9? - 9,'-11 which represents the time lapse where the RR signal has a
stationary behaviour.

The variable ! — 0 | which represents the duration of the it level of the HF energy.
This duration can be seen as the duration where only the parasympathetic (braking)

system is activated and has a fixed regime.

The variable §; — 0 | which represents the duration of the i*" level of the LF energy.
This duration can be seen as the lapse of time where only the orthosympathetic

(acceleration) system is in action and has established a fixed regime.

the variable 7; — 7j_1 which represents the inter RR, HF and LF durations of the it" level
of the HF energy before one of the two systems switches to another state.
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Application other physiological signals, and behavioural analysis...
o Pattern detection in some complex temporal signals.

o Event and Fault detection in some complex power mechanical systems.

©

Detection of some hidden structures, noises, in speech signals.



